Nuprl Lemma : collect_accum-wf2

[A,B:Type]. ∀[P:B ─→ 𝔹]. ∀[num:A ─→ ℕ]. ∀[init:B]. ∀[f:B ─→ A ─→ B].
  (collect_accum(x.num[x];init;a,v.f[a;v];a.P[a]) ∈ {s:ℤ × B × (B Top)| (↑isl(snd(snd(s))))  (1 ≤ (fst(s)))} 
   ─→ A
   ─→ {s:ℤ × B × (B Top)| (↑isl(snd(snd(s))))  (1 ≤ (fst(s)))} )


Proof




Definitions occuring in Statement :  collect_accum: collect_accum(x.num[x];init;a,v.f[a; v];a.P[a]) nat: assert: b isl: isl(x) bool: 𝔹 uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] so_apply: x[s] pi1: fst(t) pi2: snd(t) le: A ≤ B implies:  Q member: t ∈ T set: {x:A| B[x]}  function: x:A ─→ B[x] product: x:A × B[x] union: left right natural_number: $n int: universe: Type
Lemmas :  assert_wf isl_wf top_wf le_wf value-type-has-value nat_wf set-value-type int-value-type lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int assert_elim and_wf equal_wf pi2_wf bfalse_wf btrue_neq_bfalse eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf true_wf btrue_wf ppcc-problem iff_imp_equal_bool false_wf iff_weakening_equal
\mforall{}[A,B:Type].  \mforall{}[P:B  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[num:A  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[init:B].  \mforall{}[f:B  {}\mrightarrow{}  A  {}\mrightarrow{}  B].
    (collect\_accum(x.num[x];init;a,v.f[a;v];a.P[a])  \mmember{}  \{s:\mBbbZ{}  \mtimes{}  B  \mtimes{}  (B  +  Top)| 
                                                                                                          (\muparrow{}isl(snd(snd(s))))  {}\mRightarrow{}  (1  \mleq{}  (fst(s)))\} 
      {}\mrightarrow{}  A
      {}\mrightarrow{}  \{s:\mBbbZ{}  \mtimes{}  B  \mtimes{}  (B  +  Top)|  (\muparrow{}isl(snd(snd(s))))  {}\mRightarrow{}  (1  \mleq{}  (fst(s)))\}  )



Date html generated: 2015_07_17-AM-08_59_57
Last ObjectModification: 2015_02_04-PM-06_28_02

Home Index