Nuprl Lemma : st-encrypt_wf

[T:Id ─→ Type]. ∀[tab:secret-table(T)]. ∀[keyv:ℕ Atom1 × data(T)].  (encrypt(tab;keyv) ∈ secret-table(T))


Proof




Definitions occuring in Statement :  st-encrypt: encrypt(tab;keyv) secret-table: secret-table(T) data: data(T) Id: Id nat: atom: Atom$n uall: [x:A]. B[x] member: t ∈ T function: x:A ─→ B[x] product: x:A × B[x] union: left right universe: Type
Lemmas :  bool_wf eqtt_to_assert assert_of_lt_int decidable__le false_wf not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf update_wf int_seg_wf eq_int_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf nat_wf data_wf secret-table_wf Id_wf
\mforall{}[T:Id  {}\mrightarrow{}  Type].  \mforall{}[tab:secret-table(T)].  \mforall{}[keyv:\mBbbN{}  +  Atom1  \mtimes{}  data(T)].
    (encrypt(tab;keyv)  \mmember{}  secret-table(T))



Date html generated: 2015_07_17-AM-08_57_18
Last ObjectModification: 2015_01_27-PM-01_04_48

Home Index