{ [Info,A,B:Type]. [X:EClass(A)]. [x:B]. [f:B  A  B].
    (es-interface-accum(f;x;X)
    = B,r.
       if (bag-size(B 0) = 1)
       then if (bag-size(r) = 1)
            then {f[only(r);only(B 0)]}
            else {f[x;only(B 0)]}
            fi 
       else {}
       fi |i.X,(self)'|) }

{ Proof }



Definitions occuring in Statement :  rec-combined-class: f|X,(self)'| es-interface-accum: es-interface-accum(f;x;X) eclass: EClass(A[eo; e]) eq_int: (i = j) ifthenelse: if b then t else f fi  uall: [x:A]. B[x] so_apply: x[s1;s2] apply: f a lambda: x.A[x] function: x:A  B[x] natural_number: $n universe: Type equal: s = t bag-only: only(bs) bag-size: bag-size(bs) single-bag: {x} empty-bag: {}
Definitions :  permutation: permutation(T;L1;L2) IdLnk: IdLnk Id: Id append: as @ bs locl: locl(a) Knd: Knd list: type List lt_int: i <z j le_int: i z j limited-type: LimitedType bfalse: ff btrue: tt null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b unit: Unit sq_stable: SqStable(P) so_apply: x[s] union: left + right or: P  Q guard: {T} l_member: (x  l) quotient: x,y:A//B[x; y] lelt: i  j < k grp_car: |g| int_seg: {i..j} p-outcome: Outcome prop: void: Void false: False set: {x:A| B[x]}  real: rationals: nat: int: implies: P  Q eq_atom: eq_atom$n(x;y) atom: Atom es-base-E: es-base-E(es) token: "$token" eq_atom: x =a y record-select: r.x dep-isect: Error :dep-isect,  record+: record+ bool: assert: b subtype: S  T event_ordering: EO top: Top pair: <a, b> fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B axiom: Ax lambda: x.A[x] rec-combined-class: f|X,(self)'| es-interface-accum: es-interface-accum(f;x;X) universe: Type so_lambda: x y.t[x; y] uall: [x:A]. B[x] function: x:A  B[x] isect: x:A. B[x] member: t  T empty-bag: {} apply: f a bag-only: only(bs) so_apply: x[s1;s2] single-bag: {x} primed-class: Prior(X) natural_number: $n bag-size: bag-size(bs) eq_int: (i = j) ifthenelse: if b then t else f fi  bag: bag(T) equal: s = t es-E: E all: x:A. B[x] event-ordering+: EO+(Info) CollapseTHEN: Error :CollapseTHEN,  MaAuto: Error :MaAuto,  Auto: Error :Auto,  so_lambda: x.t[x] CollapseTHENA: Error :CollapseTHENA,  Try: Error :Try,  Complete: Error :Complete,  eclass: EClass(A[eo; e]) cond-class: [X?Y] eq_knd: a = b fpf-dom: x  dom(f) eq_bool: p =b q es-E-interface: E(X) eclass-val: X(e) in-eclass: e  X sq_type: SQType(T) true: True squash: T ite: ite(b;x;y) decide: case b of inl(x) =s[x] | inr(y) =t[y] sv-class: Singlevalued(X) bag_size_single: bag_size_single{bag_size_single_compseq_tag_def:o}(x) bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} rev_implies: P  Q iff: P  Q RepeatFor: Error :RepeatFor,  D: Error :D,  Repeat: Error :Repeat,  sqequal: s ~ t ParallelOp: Error :ParallelOp,  es-causl: (e < e') minus: -n add: n + m subtract: n - m exists: x:A. B[x] strongwellfounded: SWellFounded(R[x; y]) es-interface-predecessors: (X)(e) list_accum: list_accum(x,a.f[x; a];y;l) tag-by: zT record: record(x.T[x]) fset: FSet{T} dataflow: dataflow(A;B) isect2: T1  T2 b-union: A  B fpf-sub: f  g deq: EqDecider(T) ma-state: State(ds) class-program: ClassProgram(T) fpf-cap: f(x)?z intensional-universe: IType suptype: suptype(S; T) es-loc: loc(e) Subst': Error :Subst',  bag_only_single: bag_only_single{bag_only_single_compseq_tag_def:o}(x) nil: [] cons: [car / cdr] tl: tl(l) hd: hd(l) tactic: Error :tactic,  es-prior-val: (X)' es-prior-interface: prior(X) es-le: e loc e'  es-locl: (e <loc e') es-p-le: e p e' es-causle: e c e' es-p-locl: e pe' causal-predecessor: causal-predecessor(es;p) atom: Atom$n filter: filter(P;l) length: ||as|| cand: A c B is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f)
Lemmas :  sq_stable__assert es-prior-val_wf btrue_wf not_assert_elim primed-class-prior-val es-is-prior-interface es-locl_wf list_accum_append length_wf_nat set_subtype_base list_subtype_base length_wf1 es-interface-predecessors-nonempty es-prior-interface-same list-subtype l_member_wf es-prior-interface-causl eclass-val_wf2 assert_elim bool_subtype_base es-prior-interface_wf1 append_wf es-prior-interface_wf es-interface-subtype_rel2 es-interface-predecessors-step es-interface-val_wf2 es-loc_wf intensional-universe_wf es-interface-subtype_rel es-interface-accum-val es-interface-predecessors_wf Id_wf es-E-interface_wf list_accum_wf es-causl-swellfnd nat_properties ge_wf es-causl_wf is-interface-accum es-interface-extensionality rev_implies_wf iff_wf sv-class_wf es-interface-top subtype_rel_wf eclass-val_wf primed-class_wf top_wf in-eclass_wf subtype_base_sq true_wf squash_wf ite_wf bag_wf ifthenelse_wf single-bag_wf es-interface-accum_wf eclass_wf event-ordering+_wf es-E_wf event-ordering+_inc uall_wf es-base-E_wf subtype_rel_self member_wf rec-combined-class_wf le_wf not_wf false_wf nat_wf int_seg_wf eq_int_wf bag-size_wf bag-only_wf bool_wf uiff_transitivity eqtt_to_assert assert_of_eq_int assert_wf eqff_to_assert assert_of_bnot not_functionality_wrt_uiff bnot_wf permutation_wf empty-bag_wf

\mforall{}[Info,A,B:Type].  \mforall{}[X:EClass(A)].  \mforall{}[x:B].  \mforall{}[f:B  {}\mrightarrow{}  A  {}\mrightarrow{}  B].
    (es-interface-accum(f;x;X)
    =  \mlambda{}B,r.
          if  (bag-size(B  0)  =\msubz{}  1)
          then  if  (bag-size(r)  =\msubz{}  1)  then  \{f[only(r);only(B  0)]\}  else  \{f[x;only(B  0)]\}  fi 
          else  \{\}
          fi  |\mlambda{}i.X,(self)'|)


Date html generated: 2011_08_16-PM-06_07_28
Last ObjectModification: 2011_06_20-AM-01_48_18

Home Index