Nuprl Lemma : fpf-decompose

[A:Type]
  eq:EqDecider(A)
    [B:A  Type]
      f:a:A fp-B[a]
        g:a:A fp-B[a]
         a:A
          b:B[a]
           ((f  g  a : b  g  a : b  f)
            (a':A. (a' = a) supposing a'  dom(g))
            (||fpf-domain(g)|| < ||fpf-domain(f)||)) 
        supposing 0 < ||fpf-domain(f)||


Proof not projected




Definitions occuring in Statement :  fpf-single: x : v fpf-join: f  g fpf-sub: f  g fpf-domain: fpf-domain(f) fpf-dom: x  dom(f) fpf: a:A fp-B[a] length: ||as|| assert: b uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] not: A and: P  Q less_than: a < b function: x:A  B[x] natural_number: $n universe: Type equal: s = t deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] so_apply: x[s] uimplies: b supposing a fpf-domain: fpf-domain(f) exists: x:A. B[x] and: P  Q assert: b fpf-dom: x  dom(f) not: A member: t  T prop: implies: P  Q so_lambda: x.t[x] eqof: eqof(d) hd: hd(l) ge: i  j  le: A  B false: False pi1: fst(t) deq-member: deq-member(eq;x;L) reduce: reduce(f;k;as) bfalse: ff ifthenelse: if b then t else f fi  or: P  Q guard: {T} fpf-compatible: f || g pi2: snd(t) cand: A c B fpf-ap: f(x) fpf-single: x : v fpf-sub: f  g top: Top true: True squash: T btrue: tt uiff: uiff(P;Q) deq: EqDecider(T) fpf: a:A fp-B[a] length: ||as|| ycomb: Y rev_implies: P  Q iff: P  Q decidable: Dec(P) rev_uimplies: rev_uimplies(P;Q) sq_type: SQType(T)
Lemmas :  fpf-split assert_wf bnot_wf eqof_wf hd_wf fpf-domain_wf length_wf decidable__assert fpf-trivial-subtype-top less_than_wf fpf-ap_wf fpf-sub_wf fpf-join_wf fpf-single_wf all_wf fpf-dom_wf not_wf equal_wf exists_wf fpf_wf deq_wf bor_wf deq-member_wf or_wf l_member_wf iff_transitivity iff_weakening_uiff assert_of_bor or_functionality_wrt_iff assert-deq assert-deq-member fpf-join-sub fpf-sub_transitivity and_wf assert_of_bnot uiff_transitivity not_functionality_wrt_uiff decidable-equal-deq fpf-single-dom-sq eqff_to_assert eqtt_to_assert bool_subtype_base subtype_base_sq bool_cases fpf-join-ap-sq top_wf true_wf squash_wf bool_wf assert_elim member_wf fpf-compatible-symmetry fpf-compatible_wf isect_wf fpf-compatible-single-iff fpf-sub_weakening deq_property fpf-join-dom length_sublist decidable__equal_int proper_sublist_length member-fpf-domain

\mforall{}[A:Type]
    \mforall{}eq:EqDecider(A)
        \mforall{}[B:A  {}\mrightarrow{}  Type]
            \mforall{}f:a:A  fp->  B[a]
                \mexists{}g:a:A  fp->  B[a]
                  \mexists{}a:A
                    \mexists{}b:B[a]
                      ((f  \msubseteq{}  g  \moplus{}  a  :  b  \mwedge{}  g  \moplus{}  a  :  b  \msubseteq{}  f)
                      \mwedge{}  (\mforall{}a':A.  \mneg{}(a'  =  a)  supposing  \muparrow{}a'  \mmember{}  dom(g))
                      \mwedge{}  (||fpf-domain(g)||  <  ||fpf-domain(f)||)) 
                supposing  0  <  ||fpf-domain(f)||


Date html generated: 2012_01_23-AM-11_55_39
Last ObjectModification: 2011_12_27-PM-11_20_19

Home Index