Nuprl Lemma : hdf-parallel-halt-left
∀[A,B:Type]. ∀[X:hdataflow(A;B)]. hdf-halt() || X = X ∈ hdataflow(A;B) supposing valueall-type(B)
Proof
Definitions occuring in Statement :
hdf-parallel: X || Y
,
hdf-halt: hdf-halt()
,
hdataflow: hdataflow(A;B)
,
valueall-type: valueall-type(T)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
universe: Type
,
equal: s = t ∈ T
Lemmas :
hdataflow-equal,
hdf-parallel_wf,
hdf-halt_wf,
list_induction,
all_wf,
bool_wf,
hdf-halted_wf,
iterate-hdataflow_wf,
uall_wf,
equal_wf,
bag_wf,
hdf-out_wf,
list_wf,
iter_hdf_nil_lemma,
hdf_halted_halt_red_lemma,
hdf_ap_halt_lemma,
empty_bag_append_lemma,
eqtt_to_assert,
hdf_out_halt_red_lemma,
hdf-halted-is-halt,
empty-bag_wf,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
hdf_halted_run_red_lemma,
hdf-out-run,
hdataflow-ext,
unit_wf2,
hdf_halted_inl_red_lemma,
hdf-ap-inl,
valueall-type-has-valueall,
bag-valueall-type,
evalall-reduce,
hdf-out-inl,
and_wf,
hdataflow_wf,
pi2_wf,
not_wf,
false_wf,
true_wf,
iter_hdf_cons_lemma,
hdf-ap-run,
iff_weakening_equal,
valueall-type_wf,
subtype_rel_list,
top_wf,
btrue_wf,
iterate-hdf-halt
\mforall{}[A,B:Type]. \mforall{}[X:hdataflow(A;B)]. hdf-halt() || X = X supposing valueall-type(B)
Date html generated:
2015_07_17-AM-08_06_19
Last ObjectModification:
2015_02_03-PM-09_48_31
Home
Index