Nuprl Lemma : implies-setmem-piset

A:coSet{i:l}. ∀B:{a:coSet{i:l}| (a ∈ A)}  ⟶ coSet{i:l}. ∀x:coSet{i:l}.
  ((∀a1,a2:coSet{i:l}.  ((a1 ∈ A)  (a2 ∈ A)  seteq(a1;a2)  seteq(B[a1];B[a2])))
   ((x ⊆ Σa:A.B[a])
     ∧ (∀a:coSet{i:l}. ((a ∈ A)  (∃b:coSet{i:l}. ((b ∈ B[a]) ∧ ((a,b) ∈ x)))))
     ∧ (∀a,b1,b2:coSet{i:l}.  ((a ∈ A)  (b1 ∈ B[a])  (b2 ∈ B[a])  ((a,b1) ∈ x)  ((a,b2) ∈ x)  seteq(b1;b2))))
   (x ∈ piset(A;a.B[a])))


Proof




Definitions occuring in Statement :  piset: piset(A;a.B[a]) sigmaset: Σa:A.B[a] setsubset: (a ⊆ b) orderedpairset: (a,b) setmem: (x ∈ s) seteq: seteq(s1;s2) coSet: coSet{i:l} so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] prop: implies:  Q and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q exists: x:A. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a pi1: fst(t) pi2: snd(t) setmem: (x ∈ s) coWmem: coWmem(a.B[a];z;w) coW-dom: coW-dom(a.B[a];w) set-dom: set-dom(s) mk-coset: mk-coset(T;f) set-item: set-item(s;x) cand: c∧ B squash: T true: True
Lemmas referenced :  set-item-mem set-item_wf setmem_wf set-dom_wf setmem-piset-1 setsubset_wf sigmaset_wf orderedpairset_wf seteq_wf coSet_wf subtype_rel_function subtype_rel_self pi1_wf setsubset-iff setmem-sigmaset subtype_coSet coSet_subtype setmem-mk-coset setmem-coset mk-coset_wf exists_wf subtype_rel-equal seteq_functionality seteq_weakening seteq-orderedpairs-iff setmem_functionality_1 orderedpairset_functionality seteq_inversion setmem_functionality squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis dependent_set_memberEquality_alt isectElimination universeIsType productElimination sqequalRule lambdaEquality_alt applyEquality setIsType inhabitedIsType independent_functionElimination productIsType functionIsType because_Cache rename functionExtensionality instantiate cumulativity productEquality independent_isectElimination equalityIstype equalityTransitivity equalitySymmetry independent_pairEquality dependent_pairFormation_alt independent_pairFormation hypothesis_subsumption Error :memTop,  imageElimination natural_numberEquality imageMemberEquality baseClosed universeEquality dependent_pairEquality_alt

Latex:
\mforall{}A:coSet\{i:l\}.  \mforall{}B:\{a:coSet\{i:l\}|  (a  \mmember{}  A)\}    {}\mrightarrow{}  coSet\{i:l\}.  \mforall{}x:coSet\{i:l\}.
    ((\mforall{}a1,a2:coSet\{i:l\}.    ((a1  \mmember{}  A)  {}\mRightarrow{}  (a2  \mmember{}  A)  {}\mRightarrow{}  seteq(a1;a2)  {}\mRightarrow{}  seteq(B[a1];B[a2])))
    {}\mRightarrow{}  ((x  \msubseteq{}  \mSigma{}a:A.B[a])
          \mwedge{}  (\mforall{}a:coSet\{i:l\}.  ((a  \mmember{}  A)  {}\mRightarrow{}  (\mexists{}b:coSet\{i:l\}.  ((b  \mmember{}  B[a])  \mwedge{}  ((a,b)  \mmember{}  x)))))
          \mwedge{}  (\mforall{}a,b1,b2:coSet\{i:l\}.
                    ((a  \mmember{}  A)  {}\mRightarrow{}  (b1  \mmember{}  B[a])  {}\mRightarrow{}  (b2  \mmember{}  B[a])  {}\mRightarrow{}  ((a,b1)  \mmember{}  x)  {}\mRightarrow{}  ((a,b2)  \mmember{}  x)  {}\mRightarrow{}  seteq(b1;b2))))
    {}\mRightarrow{}  (x  \mmember{}  piset(A;a.B[a])))



Date html generated: 2020_05_20-PM-01_18_58
Last ObjectModification: 2020_01_06-PM-01_24_12

Theory : constructive!set!theory


Home Index