Nuprl Lemma : cu-cube-filler-uniform
∀[I:Cname List]. ∀[alpha:c𝕌(I)]. ∀[L:Cname List]. ∀[f:name-morph(I;L)]. ∀[J:nameset(L) List]. ∀[x:nameset(L)]. ∀[i:ℕ2].
∀[box:A-open-box(unit-cube(I);Kan-type(alpha);L;f;J;x;i)].
  uniform-Kan-A-filler(unit-cube(I);Kan-type(alpha);cu-cube-filler(alpha))
Proof
Definitions occuring in Statement : 
cu-cube-filler: cu-cube-filler(alpha), 
cubical-universe: c𝕌, 
Kan-type: Kan-type(Ak), 
uniform-Kan-A-filler: uniform-Kan-A-filler(X;A;filler), 
A-open-box: A-open-box(X;A;I;alpha;J;x;i), 
unit-cube: unit-cube(I), 
I-cube: X(I), 
name-morph: name-morph(I;J), 
nameset: nameset(L), 
coordinate_name: Cname, 
list: T List, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
I-cube: X(I), 
functor-ob: functor-ob(F), 
pi1: fst(t), 
cubical-universe: c𝕌, 
Kan-cubical-type: {X ⊢ _(Kan)}, 
top: Top, 
so_lambda: λ2x.t[x], 
all: ∀x:A. B[x], 
name-morph: name-morph(I;J), 
unit-cube: unit-cube(I), 
implies: P ⇒ Q, 
prop: ℙ, 
so_apply: x[s], 
uimplies: b supposing a, 
nameset: nameset(L), 
uniform-Kan-A-filler: uniform-Kan-A-filler(X;A;filler), 
sq_stable: SqStable(P), 
cu-cube-filler: cu-cube-filler(alpha), 
Kan-type: Kan-type(Ak), 
pi2: snd(t), 
and: P ∧ Q, 
squash: ↓T
Lemmas referenced : 
cubical-universe-I-cube, 
cubical-universe_wf, 
l_member_wf, 
I-cube_wf, 
cu-cube-family_wf, 
coordinate_name_wf, 
subtype_rel_list, 
equal_wf, 
isname_wf, 
assert_wf, 
all_wf, 
extd-nameset_wf, 
A-open-box_wf, 
int_seg_wf, 
nameset_wf, 
list_wf, 
name-morph_wf, 
subtype_rel_dep_function, 
cu-cube-filler_wf, 
cu-cube-family-Kan-type-at, 
Kan-cubical-type_wf, 
subtype_rel_self, 
Kan-type_wf, 
unit-cube_wf, 
sq_stable_uniform-Kan-A-filler
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
instantiate, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
lambdaEquality, 
functionEquality, 
natural_numberEquality, 
dependent_functionElimination, 
setEquality, 
independent_isectElimination, 
setElimination, 
rename, 
lambdaFormation, 
axiomEquality, 
productElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}[I:Cname  List].  \mforall{}[alpha:c\mBbbU{}(I)].  \mforall{}[L:Cname  List].  \mforall{}[f:name-morph(I;L)].  \mforall{}[J:nameset(L)  List].
\mforall{}[x:nameset(L)].  \mforall{}[i:\mBbbN{}2].  \mforall{}[box:A-open-box(unit-cube(I);Kan-type(alpha);L;f;J;x;i)].
    uniform-Kan-A-filler(unit-cube(I);Kan-type(alpha);cu-cube-filler(alpha))
Date html generated:
2016_06_16-PM-08_08_16
Last ObjectModification:
2016_01_18-PM-04_44_47
Theory : cubical!sets
Home
Index