Nuprl Lemma : case-type-comp-partition

[Gamma:j⊢]. ∀[phi,psi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma, phi ⊢ _}]. ∀[B:{Gamma, psi ⊢ _}]. ∀[cA:Gamma, phi ⊢ Compositon(A)].
[cB:Gamma, psi ⊢ Compositon(B)].
  case-type-comp(Gamma; phi; psi; A; B; cA; cB) ∈ Gamma ⊢ Compositon((if phi then else B)) 
  supposing Gamma ⊢ ((phi ∧ psi)  0(𝔽)) ∧ Gamma ⊢ (1(𝔽 (phi ∨ psi))


Proof




Definitions occuring in Statement :  case-type-comp: case-type-comp(G; phi; psi; A; B; cA; cB) composition-structure: Gamma ⊢ Compositon(A) case-type: (if phi then else B) face-term-implies: Gamma ⊢ (phi  psi) context-subset: Gamma, phi face-or: (a ∨ b) face-and: (a ∧ b) face-1: 1(𝔽) face-0: 0(𝔽) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q subtype_rel: A ⊆B prop: same-cubical-type: Gamma ⊢ B all: x:A. B[x] implies:  Q face-term-implies: Gamma ⊢ (phi  psi) bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s] cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt
Lemmas referenced :  case-type-comp-disjoint composition-structure-subset context-subset_wf face-or_wf case-type_wf face-term-implies_wf face-and_wf face-0_wf face-1_wf composition-structure_wf cubical-type_wf istype-cubical-term face-type_wf cubical_set_wf face-1-implies-subset same-cubical-type-0 subtype-context-subset-0 context-subset-subtype lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf cubical-term-at_wf subtype_rel_self lattice-1_wf I_cube_wf fset_wf nat_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination productElimination equalityTransitivity equalitySymmetry applyEquality sqequalRule axiomEquality productIsType universeIsType instantiate inhabitedIsType lambdaFormation_alt dependent_functionElimination independent_functionElimination equalityIstype lambdaEquality_alt productEquality cumulativity isectEquality because_Cache setElimination rename

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi,psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma,  phi  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma,  psi  \mvdash{}  \_\}].
\mforall{}[cA:Gamma,  phi  \mvdash{}  Compositon(A)].  \mforall{}[cB:Gamma,  psi  \mvdash{}  Compositon(B)].
    case-type-comp(Gamma;  phi;  psi;  A;  B;  cA;  cB)  \mmember{}  Gamma  \mvdash{}  Compositon((if  phi  then  A  else  B)) 
    supposing  Gamma  \mvdash{}  ((phi  \mwedge{}  psi)  {}\mRightarrow{}  0(\mBbbF{}))  \mwedge{}  Gamma  \mvdash{}  (1(\mBbbF{})  {}\mRightarrow{}  (phi  \mvee{}  psi))



Date html generated: 2020_05_20-PM-05_19_29
Last ObjectModification: 2020_04_18-PM-07_58_52

Theory : cubical!type!theory


Home Index