Nuprl Lemma : composition-in-subset
∀[G:j⊢]. ∀[A:{G ⊢ _}]. ∀[cA:G ⊢ Compositon(A)]. ∀[H1,H2:j⊢].
  ∀[sigma:H1.𝕀 j⟶ G]. ∀[phi:{H1 ⊢ _:𝔽}]. ∀[u:{H1, phi.𝕀 ⊢ _:(A)sigma}].
  ∀[a0:{H1 ⊢ _:((A)sigma)[0(𝕀)][phi |⟶ (u)[0(𝕀)]]}].
    ((cA H1 sigma phi u a0) = (cA H2 sigma phi u a0) ∈ {H2 ⊢ _:((A)sigma)[1(𝕀)]}) 
  supposing sub_cubical_set{j:l}(H2; H1)
Proof
Definitions occuring in Statement : 
composition-structure: Gamma ⊢ Compositon(A)
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
interval-1: 1(𝕀)
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
csm-id-adjoin: [u]
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
sub_cubical_set: Y ⊆ X
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
squash: ↓T
, 
csm-id-adjoin: [u]
, 
csm-id: 1(X)
, 
cubical-type: {X ⊢ _}
, 
csm-ap-type: (AF)s
, 
interval-1: 1(𝕀)
, 
csm-adjoin: (s;u)
, 
csm-ap: (s)x
, 
prop: ℙ
, 
true: True
, 
composition-function: composition-function{j:l,i:l}(Gamma;A)
, 
implies: P 
⇒ Q
, 
csm+: tau+
, 
csm-comp: G o F
, 
cube-context-adjoin: X.A
, 
interval-type: 𝕀
, 
compose: f o g
, 
cc-snd: q
, 
cc-fst: p
, 
constant-cubical-type: (X)
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
cc-adjoin-cube: (v;u)
, 
and: P ∧ Q
, 
interval-0: 0(𝕀)
, 
csm-ap-term: (t)s
Lemmas referenced : 
csm-id_wf, 
cube_set_map_subtype3, 
sub_cubical_set_self, 
constrained-cubical-term_wf, 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
csm-id-adjoin_wf-interval-0, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
csm-ap-term_wf, 
context-subset_wf, 
thin-context-subset-adjoin, 
istype-cubical-term, 
csm-context-subset-subtype3, 
face-type_wf, 
cube_set_map_wf, 
sub_cubical_set_wf, 
composition-structure_wf, 
cubical-type_wf, 
cubical_set_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
csm-id-adjoin_wf, 
interval-1_wf, 
sub_cubical_set-cumulativity1, 
cubical-term_wf, 
csm-ap-id-term, 
subset-cubical-term2, 
csm-id-adjoin_wf-interval-1, 
csm-equal, 
sub_cubical_set_functionality, 
csm-comp_wf, 
csm+_wf_interval, 
cube-set-map-subtype, 
I_cube_wf, 
fset_wf, 
nat_wf, 
I_cube_pair_redex_lemma, 
csm-ap_wf, 
cc-adjoin-cube_wf, 
subset-cubical-term, 
sub_cubical_set_transitivity, 
context-subset-is-subset, 
sub_cubical_set_functionality2, 
interval-0_wf, 
csm-context-subset-subtype2, 
subset-cubical-type
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
sqequalRule, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
universeIsType, 
instantiate, 
inhabitedIsType, 
productElimination, 
hyp_replacement, 
equalitySymmetry, 
lambdaEquality_alt, 
equalityTransitivity, 
universeEquality, 
natural_numberEquality, 
lambdaFormation_alt, 
equalityIstype, 
independent_functionElimination, 
functionExtensionality, 
Error :memTop, 
independent_pairFormation, 
dependent_set_memberEquality_alt
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].  \mforall{}[cA:G  \mvdash{}  Compositon(A)].  \mforall{}[H1,H2:j\mvdash{}].
    \mforall{}[sigma:H1.\mBbbI{}  j{}\mrightarrow{}  G].  \mforall{}[phi:\{H1  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[u:\{H1,  phi.\mBbbI{}  \mvdash{}  \_:(A)sigma\}].
    \mforall{}[a0:\{H1  \mvdash{}  \_:((A)sigma)[0(\mBbbI{})][phi  |{}\mrightarrow{}  (u)[0(\mBbbI{})]]\}].
        ((cA  H1  sigma  phi  u  a0)  =  (cA  H2  sigma  phi  u  a0)) 
    supposing  sub\_cubical\_set\{j:l\}(H2;  H1)
Date html generated:
2020_05_20-PM-04_23_42
Last ObjectModification:
2020_04_17-PM-04_43_43
Theory : cubical!type!theory
Home
Index