Nuprl Lemma : composition-in-subset

[G:j⊢]. ∀[A:{G ⊢ _}]. ∀[cA:G ⊢ Compositon(A)]. ∀[H1,H2:j⊢].
  ∀[sigma:H1.𝕀 j⟶ G]. ∀[phi:{H1 ⊢ _:𝔽}]. ∀[u:{H1, phi.𝕀 ⊢ _:(A)sigma}].
  ∀[a0:{H1 ⊢ _:((A)sigma)[0(𝕀)][phi |⟶ (u)[0(𝕀)]]}].
    ((cA H1 sigma phi a0) (cA H2 sigma phi a0) ∈ {H2 ⊢ _:((A)sigma)[1(𝕀)]}) 
  supposing sub_cubical_set{j:l}(H2; H1)


Proof




Definitions occuring in Statement :  composition-structure: Gamma ⊢ Compositon(A) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} sub_cubical_set: Y ⊆ X cube_set_map: A ⟶ B cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a composition-structure: Gamma ⊢ Compositon(A) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} squash: T csm-id-adjoin: [u] csm-id: 1(X) cubical-type: {X ⊢ _} csm-ap-type: (AF)s interval-1: 1(𝕀) csm-adjoin: (s;u) csm-ap: (s)x prop: true: True composition-function: composition-function{j:l,i:l}(Gamma;A) implies:  Q csm+: tau+ csm-comp: F cube-context-adjoin: X.A interval-type: 𝕀 compose: g cc-snd: q cc-fst: p constant-cubical-type: (X) pi2: snd(t) pi1: fst(t) cc-adjoin-cube: (v;u) and: P ∧ Q interval-0: 0(𝕀) csm-ap-term: (t)s
Lemmas referenced :  csm-id_wf cube_set_map_subtype3 sub_cubical_set_self constrained-cubical-term_wf csm-ap-type_wf cube-context-adjoin_wf interval-type_wf csm-id-adjoin_wf-interval-0 cubical-type-cumulativity2 cubical_set_cumulativity-i-j csm-ap-term_wf context-subset_wf thin-context-subset-adjoin istype-cubical-term csm-context-subset-subtype3 face-type_wf cube_set_map_wf sub_cubical_set_wf composition-structure_wf cubical-type_wf cubical_set_wf equal_wf squash_wf true_wf istype-universe csm-id-adjoin_wf interval-1_wf sub_cubical_set-cumulativity1 cubical-term_wf csm-ap-id-term subset-cubical-term2 csm-id-adjoin_wf-interval-1 csm-equal sub_cubical_set_functionality csm-comp_wf csm+_wf_interval cube-set-map-subtype I_cube_wf fset_wf nat_wf I_cube_pair_redex_lemma csm-ap_wf cc-adjoin-cube_wf subset-cubical-term sub_cubical_set_transitivity context-subset-is-subset sub_cubical_set_functionality2 interval-0_wf csm-context-subset-subtype2 subset-cubical-type
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalHypSubstitution setElimination thin rename cut dependent_functionElimination hypothesisEquality hypothesis introduction extract_by_obid isectElimination applyEquality because_Cache independent_isectElimination sqequalRule applyLambdaEquality imageMemberEquality baseClosed imageElimination universeIsType instantiate inhabitedIsType productElimination hyp_replacement equalitySymmetry lambdaEquality_alt equalityTransitivity universeEquality natural_numberEquality lambdaFormation_alt equalityIstype independent_functionElimination functionExtensionality Error :memTop,  independent_pairFormation dependent_set_memberEquality_alt

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].  \mforall{}[cA:G  \mvdash{}  Compositon(A)].  \mforall{}[H1,H2:j\mvdash{}].
    \mforall{}[sigma:H1.\mBbbI{}  j{}\mrightarrow{}  G].  \mforall{}[phi:\{H1  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[u:\{H1,  phi.\mBbbI{}  \mvdash{}  \_:(A)sigma\}].
    \mforall{}[a0:\{H1  \mvdash{}  \_:((A)sigma)[0(\mBbbI{})][phi  |{}\mrightarrow{}  (u)[0(\mBbbI{})]]\}].
        ((cA  H1  sigma  phi  u  a0)  =  (cA  H2  sigma  phi  u  a0)) 
    supposing  sub\_cubical\_set\{j:l\}(H2;  H1)



Date html generated: 2020_05_20-PM-04_23_42
Last ObjectModification: 2020_04_17-PM-04_43_43

Theory : cubical!type!theory


Home Index