Nuprl Lemma : dM_inc_not_1
∀[I:fset(ℕ)]. ∀[x:names(I)].  (¬(<x> = 1 ∈ Point(dM(I))))
Proof
Definitions occuring in Statement : 
dM1: 1
, 
dM_inc: <x>
, 
dM: dM(I)
, 
names: names(I)
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
top: Top
, 
dM_inc: <x>
, 
dminc: <i>
, 
free-dl-inc: free-dl-inc(x)
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
DeMorgan-algebra: DeMorganAlgebra
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
empty-fset: {}
, 
fset-null: fset-null(s)
, 
fset-singleton: {x}
, 
all: ∀x:A. B[x]
Lemmas referenced : 
dM1-sq-singleton-empty, 
dM-point, 
equal_wf, 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
dM_inc_wf, 
dM1_wf, 
names_wf, 
fset_wf, 
nat_wf, 
member-fset-singleton, 
deq-fset_wf, 
union-deq_wf, 
names-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-union, 
strong-subtype-self, 
strong-subtype-void, 
fset-singleton_wf, 
fset-member_wf, 
empty-fset_wf, 
fset-null_wf, 
null_cons_lemma, 
null_nil_lemma, 
btrue_neq_bfalse
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
sqequalRule, 
extract_by_obid, 
isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
applyLambdaEquality, 
setElimination, 
rename, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
imageElimination, 
because_Cache, 
independent_functionElimination, 
applyEquality, 
instantiate, 
lambdaEquality, 
productEquality, 
independent_isectElimination, 
cumulativity, 
universeEquality, 
dependent_functionElimination, 
unionEquality, 
inlEquality, 
productElimination, 
equalitySymmetry, 
hyp_replacement
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x:names(I)].    (\mneg{}(<x>  =  1))
Date html generated:
2017_10_05-AM-00_59_17
Last ObjectModification:
2017_07_28-AM-09_25_15
Theory : cubical!type!theory
Home
Index