Nuprl Lemma : respects-equality-face-lattice-point
∀[I,J:fset(ℕ)].  respects-equality(Point(face_lattice(I));Point(face_lattice(J)))
Proof
Definitions occuring in Statement : 
face_lattice: face_lattice(I)
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
respects-equality: respects-equality(S;T)
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
face_lattice: face_lattice(I)
, 
lattice-point: Point(l)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
names: names(I)
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
respects-equality: respects-equality(S;T)
Lemmas referenced : 
rec_select_update_lemma, 
istype-void, 
respects-equality-sets, 
fset_wf, 
names_wf, 
assert_wf, 
fset-antichain_wf, 
union-deq_wf, 
names-deq_wf, 
fset-all_wf, 
fset-contains-none_wf, 
face-lattice-constraints_wf, 
respects-equality-fset, 
respects-equality-union, 
subtype-base-respects-equality, 
nat_wf, 
fset-member_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
istype-int, 
strong-subtype-self, 
set_subtype_base, 
istype-nat, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
isect_memberFormation_alt, 
isectElimination, 
unionEquality, 
hypothesisEquality, 
lambdaEquality_alt, 
productEquality, 
unionIsType, 
universeIsType, 
because_Cache, 
independent_functionElimination, 
independent_isectElimination, 
setEquality, 
applyEquality, 
intEquality, 
natural_numberEquality, 
axiomEquality, 
functionIsTypeImplies, 
inhabitedIsType, 
isectIsTypeImplies
Latex:
\mforall{}[I,J:fset(\mBbbN{})].    respects-equality(Point(face\_lattice(I));Point(face\_lattice(J)))
Date html generated:
2019_11_04-PM-05_32_39
Last ObjectModification:
2018_12_13-PM-00_37_01
Theory : cubical!type!theory
Home
Index