Nuprl Lemma : common-P_point-intersecting-P_lines
∀e:EuclideanParPlane. ∀P:P_point(e). ∀L:P_line(e).
  ((¬P_point-line-sep(e;P;L))
  ⇒ (fst(snd(P)) \/ fst(snd(snd(P))) ∧ (∀l,m,n:Line.  (l \/ m ⇒ (l \/ n ∨ m \/ n))))
  ⇒ (∃x:Point. ((x I fst(snd(P)) ∧ x I fst(snd(snd(P)))) ∧ x I fst(L))))
Proof
Definitions occuring in Statement : 
P_point-line-sep: P_point-line-sep(e;P;L), 
P_line: P_line(eu), 
P_point: P_point(eu), 
euclidean-parallel-plane: EuclideanParPlane, 
geo-intersect: L \/ M, 
geo-incident: p I L, 
geo-line: Line, 
geo-point: Point, 
pi1: fst(t), 
pi2: snd(t), 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
or: P ∨ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
P_point: P_point(eu), 
P_line: P_line(eu), 
pi2: snd(t), 
pi1: fst(t), 
member: t ∈ T, 
euclidean-parallel-plane: EuclideanParPlane, 
iff: P ⇐⇒ Q, 
exists: ∃x:A. B[x], 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
P_point-line-sep: P_point-line-sep(e;P;L), 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
or: P ∨ Q, 
so_apply: x[s], 
cand: A c∧ B, 
not: ¬A, 
false: False, 
sq_stable: SqStable(P), 
squash: ↓T, 
rev_implies: P ⇐ Q, 
geo-plsep: p # l, 
geo-line: Line, 
top: Top, 
geo-line-sep: (l # m), 
uiff: uiff(P;Q)
Lemmas referenced : 
geo-intersect-lines-iff, 
geo-intersect_wf, 
geoline-subtype1, 
all_wf, 
geo-line_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
euclidean-planes-subtype, 
subtype_rel_transitivity, 
euclidean-parallel-plane_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
or_wf, 
not_wf, 
P_point-line-sep_wf, 
P_line_wf, 
P_point_wf, 
geo-incident_wf, 
geo-plsep_wf, 
geo-intersect-unique, 
sq_stable__incident, 
set_wf, 
geo-point_wf, 
geo-plsep_functionality, 
geo-line-eq_weakening2, 
not-lsep-iff-colinear, 
pi1_wf_top, 
geo-incident-line
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
productEquality, 
isectElimination, 
because_Cache, 
applyEquality, 
instantiate, 
independent_isectElimination, 
lambdaEquality, 
functionEquality, 
unionElimination, 
dependent_pairFormation, 
independent_pairFormation, 
voidElimination, 
inlFormation, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_pairEquality, 
isect_memberEquality, 
voidEquality, 
inrFormation
Latex:
\mforall{}e:EuclideanParPlane.  \mforall{}P:P\_point(e).  \mforall{}L:P\_line(e).
    ((\mneg{}P\_point-line-sep(e;P;L))
    {}\mRightarrow{}  (fst(snd(P))  \mbackslash{}/  fst(snd(snd(P)))  \mwedge{}  (\mforall{}l,m,n:Line.    (l  \mbackslash{}/  m  {}\mRightarrow{}  (l  \mbackslash{}/  n  \mvee{}  m  \mbackslash{}/  n))))
    {}\mRightarrow{}  (\mexists{}x:Point.  ((x  I  fst(snd(P))  \mwedge{}  x  I  fst(snd(snd(P))))  \mwedge{}  x  I  fst(L))))
Date html generated:
2019_10_16-PM-03_03_10
Last ObjectModification:
2018_08_11-PM-10_21_04
Theory : euclidean!plane!geometry
Home
Index