Nuprl Lemma : common-P_point-intersecting-P_lines

e:EuclideanParPlane. ∀P:P_point(e). ∀L:P_line(e).
  ((¬P_point-line-sep(e;P;L))
   (fst(snd(P)) \/ fst(snd(snd(P))) ∧ (∀l,m,n:Line.  (l \/  (l \/ n ∨ \/ n))))
   (∃x:Point. ((x fst(snd(P)) ∧ fst(snd(snd(P)))) ∧ fst(L))))


Proof




Definitions occuring in Statement :  P_point-line-sep: P_point-line-sep(e;P;L) P_line: P_line(eu) P_point: P_point(eu) euclidean-parallel-plane: EuclideanParPlane geo-intersect: \/ M geo-incident: L geo-line: Line geo-point: Point pi1: fst(t) pi2: snd(t) all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q P_point: P_point(eu) P_line: P_line(eu) pi2: snd(t) pi1: fst(t) member: t ∈ T euclidean-parallel-plane: EuclideanParPlane iff: ⇐⇒ Q exists: x:A. B[x] prop: uall: [x:A]. B[x] P_point-line-sep: P_point-line-sep(e;P;L) subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] or: P ∨ Q so_apply: x[s] cand: c∧ B not: ¬A false: False sq_stable: SqStable(P) squash: T rev_implies:  Q geo-plsep: l geo-line: Line top: Top geo-line-sep: (l m) uiff: uiff(P;Q)
Lemmas referenced :  geo-intersect-lines-iff geo-intersect_wf geoline-subtype1 all_wf geo-line_wf euclidean-plane-structure-subtype euclidean-plane-subtype euclidean-planes-subtype subtype_rel_transitivity euclidean-parallel-plane_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf or_wf not_wf P_point-line-sep_wf P_line_wf P_point_wf geo-incident_wf geo-plsep_wf geo-intersect-unique sq_stable__incident set_wf geo-point_wf geo-plsep_functionality geo-line-eq_weakening2 not-lsep-iff-colinear pi1_wf_top geo-incident-line
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin sqequalRule cut introduction extract_by_obid dependent_functionElimination setElimination rename hypothesisEquality hypothesis independent_functionElimination productEquality isectElimination because_Cache applyEquality instantiate independent_isectElimination lambdaEquality functionEquality unionElimination dependent_pairFormation independent_pairFormation voidElimination inlFormation imageMemberEquality baseClosed imageElimination independent_pairEquality isect_memberEquality voidEquality inrFormation

Latex:
\mforall{}e:EuclideanParPlane.  \mforall{}P:P\_point(e).  \mforall{}L:P\_line(e).
    ((\mneg{}P\_point-line-sep(e;P;L))
    {}\mRightarrow{}  (fst(snd(P))  \mbackslash{}/  fst(snd(snd(P)))  \mwedge{}  (\mforall{}l,m,n:Line.    (l  \mbackslash{}/  m  {}\mRightarrow{}  (l  \mbackslash{}/  n  \mvee{}  m  \mbackslash{}/  n))))
    {}\mRightarrow{}  (\mexists{}x:Point.  ((x  I  fst(snd(P))  \mwedge{}  x  I  fst(snd(snd(P))))  \mwedge{}  x  I  fst(L))))



Date html generated: 2019_10_16-PM-03_03_10
Last ObjectModification: 2018_08_11-PM-10_21_04

Theory : euclidean!plane!geometry


Home Index