Nuprl Lemma : cong-angle-out-aux-weak
∀g:HeytingGeometry. ∀a,b,c,d,e,f,a',c',d',f':Point.
  (abc ≅a def 
⇒ out(b a'a) 
⇒ out(b c'c) 
⇒ out(e d'd) 
⇒ out(e f'f) 
⇒ ba' ≅ ed' 
⇒ bc' ≅ ef' 
⇒ a'c' ≅ d'f')
Proof
Definitions occuring in Statement : 
heyting-geometry: HeytingGeometry
, 
geo-out: out(p ab)
, 
geo-cong-angle: abc ≅a xyz
, 
geo-congruent: ab ≅ cd
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
geo-cong-angle: abc ≅a xyz
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
uimplies: b supposing a
, 
heyting-geometry: HeytingGeometry
, 
prop: ℙ
, 
geo-out: out(p ab)
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
l_all: (∀x∈L.P[x])
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
uiff: uiff(P;Q)
Lemmas referenced : 
geo-between-out, 
euclidean-plane-subtype-basic, 
heyting-geometry-subtype, 
subtype_rel_transitivity, 
heyting-geometry_wf, 
euclidean-plane_wf, 
basic-geometry_wf, 
geo-sep-sym, 
geo-between-sep, 
geo-out_transitivity, 
geo-out_inversion, 
geo-congruent_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-out_wf, 
geo-cong-angle_wf, 
geo-point_wf, 
geo-out-cong-cong, 
geo-colinear-five-segment, 
geo-colinear-is-colinear-set, 
geo-out-colinear, 
length_of_cons_lemma, 
istype-void, 
length_of_nil_lemma, 
istype-false, 
istype-le, 
istype-less_than, 
oriented-colinear-append, 
euclidean-plane-subtype-oriented, 
oriented-plane_wf, 
cons_wf, 
nil_wf, 
cons_member, 
l_member_wf, 
geo-sep_wf, 
geo-between-implies-colinear, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
geo-congruent-iff-length, 
geo-length-flip
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
isectElimination, 
independent_isectElimination, 
sqequalRule, 
independent_functionElimination, 
because_Cache, 
universeIsType, 
inhabitedIsType, 
isect_memberEquality_alt, 
voidElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
productIsType, 
dependent_pairFormation_alt, 
inlFormation_alt, 
inrFormation_alt, 
equalityIsType1, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}g:HeytingGeometry.  \mforall{}a,b,c,d,e,f,a',c',d',f':Point.
    (abc  \mcong{}\msuba{}  def
    {}\mRightarrow{}  out(b  a'a)
    {}\mRightarrow{}  out(b  c'c)
    {}\mRightarrow{}  out(e  d'd)
    {}\mRightarrow{}  out(e  f'f)
    {}\mRightarrow{}  ba'  \mcong{}  ed'
    {}\mRightarrow{}  bc'  \mcong{}  ef'
    {}\mRightarrow{}  a'c'  \mcong{}  d'f')
Date html generated:
2019_10_16-PM-02_08_01
Last ObjectModification:
2018_11_07-PM-01_09_08
Theory : euclidean!plane!geometry
Home
Index