Nuprl Lemma : geo-Aax2

g:EuclideanPlane. ∀a,b:Point. ∀l,m:Line.  (a ≠  (a l ∧ m)  (b l ∧ m)  l ≡ m)


Proof




Definitions occuring in Statement :  geo-incident: L geo-line-eq: l ≡ m geo-line: Line euclidean-plane: EuclideanPlane geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q geo-line: Line pi1: fst(t) pi2: snd(t) geo-line-eq: l ≡ m not: ¬A geo-line-sep: geo-line-sep(g;l;m) exists: x:A. B[x] member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a uiff: uiff(P;Q) so_lambda: λ2x.t[x] so_apply: x[s] false: False iff: ⇐⇒ Q rev_implies:  Q oriented-plane: OrientedPlane cand: c∧ B or: P ∨ Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) less_than: a < b squash: T true: True select: L[n] cons: [a b] subtract: m
Lemmas referenced :  geo-line-sep_wf geo-sep_wf geo-point_wf geo-colinear_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-line_wf geo-incident-line geo-incident_wf geoline-subtype1 all_wf geo-line-eq_wf not-lsep-iff-colinear oriented-colinear-append cons_wf nil_wf cons_member l_member_wf equal_wf exists_wf geo-colinear-is-colinear-set list_ind_cons_lemma list_ind_nil_lemma length_of_cons_lemma length_of_nil_lemma false_wf lelt_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin sqequalRule introduction extract_by_obid isectElimination hypothesisEquality applyEquality because_Cache hypothesis dependent_pairEquality productEquality instantiate independent_isectElimination dependent_functionElimination addLevel allFunctionality impliesFunctionality independent_pairFormation andLevelFunctionality lambdaEquality cumulativity universeEquality functionEquality independent_functionElimination voidElimination dependent_pairFormation inrFormation inlFormation isect_memberEquality voidEquality dependent_set_memberEquality natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b:Point.  \mforall{}l,m:Line.    (a  \mneq{}  b  {}\mRightarrow{}  (a  I  l  \mwedge{}  a  I  m)  {}\mRightarrow{}  (b  I  l  \mwedge{}  b  I  m)  {}\mRightarrow{}  l  \mequiv{}  m)



Date html generated: 2018_05_22-PM-01_19_01
Last ObjectModification: 2018_05_13-PM-11_21_37

Theory : euclidean!plane!geometry


Home Index