Nuprl Lemma : rng-pp-nontrivial-4

r:IntegDom{i}. ∀eq:EqDecider(|r|). ∀p:{p:ℕ3 ⟶ |r|| ¬(p 0 ∈ (ℕ3 ⟶ |r|))} .
  ∃l,m,n:{p:ℕ3 ⟶ |r|| ¬(p 0 ∈ (ℕ3 ⟶ |r|))} 
   ((¬¬((p l) 0 ∈ |r|))
   ∧ (¬¬((p m) 0 ∈ |r|))
   ∧ (¬¬((p n) 0 ∈ |r|))
   ∧ (∃a:{p:ℕ3 ⟶ |r|| ¬(p 0 ∈ (ℕ3 ⟶ |r|))} ((¬¬((a l) 0 ∈ |r|)) ∧ ((a m) 0 ∈ |r|))))
   ∧ (∃a:{p:ℕ3 ⟶ |r|| ¬(p 0 ∈ (ℕ3 ⟶ |r|))} ((¬¬((a m) 0 ∈ |r|)) ∧ ((a n) 0 ∈ |r|))))
   ∧ (∃a:{p:ℕ3 ⟶ |r|| ¬(p 0 ∈ (ℕ3 ⟶ |r|))} ((¬¬((a n) 0 ∈ |r|)) ∧ ((a l) 0 ∈ |r|)))))


Proof




Definitions occuring in Statement :  deq: EqDecider(T) int_seg: {i..j-} all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T integ_dom: IntegDom{i} rng_zero: 0 rng_car: |r| scalar-product: (a b) zero-vector: 0
Definitions unfolded in proof :  sq_exists: x:A [B[x]] so_apply: x[s] so_lambda: λ2x.t[x] cand: c∧ B less_than': less_than'(a;b) le: A ≤ B nat: false: False rev_implies:  Q iff: ⇐⇒ Q uimplies: supposing a subtype_rel: A ⊆B true: True prop: squash: T not: ¬A and: P ∧ Q exists: x:A. B[x] guard: {T} implies:  Q rng: Rng crng: CRng integ_dom: IntegDom{i} member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  cross-product_wf cross-product-non-zero-implies-ext integ_dom_wf deq_wf set_wf rng_zero_wf zero-vector_wf int_seg_wf exists_wf le_wf false_wf scalar-product_wf not_wf iff_weakening_equal subtype_rel_self scalar-product-comm true_wf squash_wf equal_wf rng-pp-nontrivial-2 rng_car_wf deq-implies
Rules used in proof :  functionExtensionality functionEquality setEquality productEquality comment dependent_set_memberEquality voidElimination independent_isectElimination instantiate baseClosed imageMemberEquality sqequalRule natural_numberEquality universeEquality equalitySymmetry equalityTransitivity imageElimination lambdaEquality applyEquality promote_hyp independent_pairFormation dependent_pairFormation productElimination hypothesisEquality dependent_functionElimination independent_functionElimination hypothesis because_Cache rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}r:IntegDom\{i\}.  \mforall{}eq:EqDecider(|r|).  \mforall{}p:\{p:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(p  =  0)\}  .
    \mexists{}l,m,n:\{p:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(p  =  0)\} 
      ((\mneg{}\mneg{}((p  .  l)  =  0))
      \mwedge{}  (\mneg{}\mneg{}((p  .  m)  =  0))
      \mwedge{}  (\mneg{}\mneg{}((p  .  n)  =  0))
      \mwedge{}  (\mexists{}a:\{p:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(p  =  0)\}  .  ((\mneg{}\mneg{}((a  .  l)  =  0))  \mwedge{}  (\mneg{}((a  .  m)  =  0))))
      \mwedge{}  (\mexists{}a:\{p:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(p  =  0)\}  .  ((\mneg{}\mneg{}((a  .  m)  =  0))  \mwedge{}  (\mneg{}((a  .  n)  =  0))))
      \mwedge{}  (\mexists{}a:\{p:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(p  =  0)\}  .  ((\mneg{}\mneg{}((a  .  n)  =  0))  \mwedge{}  (\mneg{}((a  .  l)  =  0)))))



Date html generated: 2018_05_22-PM-00_54_38
Last ObjectModification: 2018_05_21-AM-01_27_15

Theory : euclidean!plane!geometry


Home Index