Nuprl Lemma : free-group-hom
∀[X:Type]. ∀G:Group{i}. ∀f:X ⟶ |G|.  ∃F:MonHom(free-group(X),G). ∀x:X. ((F free-letter(x)) = (f x) ∈ |G|)
Proof
Definitions occuring in Statement : 
free-letter: free-letter(x)
, 
free-group: free-group(X)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
monoid_hom: MonHom(M1,M2)
, 
grp: Group{i}
, 
grp_car: |g|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
grp: Group{i}
, 
mon: Mon
, 
so_lambda: λ2x.t[x]
, 
monoid_hom: MonHom(M1,M2)
, 
free-group: free-group(X)
, 
grp_car: |g|
, 
pi1: fst(t)
, 
so_apply: x[s]
, 
prop: ℙ
, 
free-letter: free-letter(x)
, 
fg-lift: fg-lift(G;f)
, 
fg-hom: fg-hom(G;f;w)
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
imon: IMonoid
, 
and: P ∧ Q
Lemmas referenced : 
fg-lift_wf, 
monoid_hom_wf, 
free-group_wf, 
all_wf, 
equal_wf, 
grp_car_wf, 
free-letter_wf, 
free-word_wf, 
grp_wf, 
list_accum_cons_lemma, 
list_accum_nil_lemma, 
mon_ident, 
grp_sig_wf, 
monoid_p_wf, 
grp_op_wf, 
grp_id_wf, 
inverse_wf, 
grp_inv_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
dependent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
dependent_functionElimination, 
functionExtensionality, 
applyEquality, 
hypothesis, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
because_Cache, 
sqequalRule, 
functionEquality, 
universeEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination
Latex:
\mforall{}[X:Type].  \mforall{}G:Group\{i\}.  \mforall{}f:X  {}\mrightarrow{}  |G|.    \mexists{}F:MonHom(free-group(X),G).  \mforall{}x:X.  ((F  free-letter(x))  =  (f  x))
Date html generated:
2017_01_19-PM-02_51_34
Last ObjectModification:
2017_01_16-AM-00_26_54
Theory : free!groups
Home
Index