Nuprl Lemma : free-group-hom

[X:Type]. ∀G:Group{i}. ∀f:X ⟶ |G|.  ∃F:MonHom(free-group(X),G). ∀x:X. ((F free-letter(x)) (f x) ∈ |G|)


Proof




Definitions occuring in Statement :  free-letter: free-letter(x) free-group: free-group(X) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T monoid_hom: MonHom(M1,M2) grp: Group{i} grp_car: |g|
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B grp: Group{i} mon: Mon so_lambda: λ2x.t[x] monoid_hom: MonHom(M1,M2) free-group: free-group(X) grp_car: |g| pi1: fst(t) so_apply: x[s] prop: free-letter: free-letter(x) fg-lift: fg-lift(G;f) fg-hom: fg-hom(G;f;w) top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] imon: IMonoid and: P ∧ Q
Lemmas referenced :  fg-lift_wf monoid_hom_wf free-group_wf all_wf equal_wf grp_car_wf free-letter_wf free-word_wf grp_wf list_accum_cons_lemma list_accum_nil_lemma mon_ident grp_sig_wf monoid_p_wf grp_op_wf grp_id_wf inverse_wf grp_inv_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation dependent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality dependent_functionElimination functionExtensionality applyEquality hypothesis lambdaEquality setElimination rename setEquality because_Cache sqequalRule functionEquality universeEquality isect_memberEquality voidElimination voidEquality productElimination

Latex:
\mforall{}[X:Type].  \mforall{}G:Group\{i\}.  \mforall{}f:X  {}\mrightarrow{}  |G|.    \mexists{}F:MonHom(free-group(X),G).  \mforall{}x:X.  ((F  free-letter(x))  =  (f  x))



Date html generated: 2017_01_19-PM-02_51_34
Last ObjectModification: 2017_01_16-AM-00_26_54

Theory : free!groups


Home Index