Nuprl Lemma : hyptrans_wf

[rv:InnerProductSpace]. ∀[e,x:Point]. ∀[t:ℝ].  (hyptrans(rv;e;t;x) ∈ Point)


Proof




Definitions occuring in Statement :  hyptrans: hyptrans(rv;e;t;x) inner-product-space: InnerProductSpace real: ss-point: Point uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T hyptrans: hyptrans(rv;e;t;x) subtype_rel: A ⊆B all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: guard: {T} uimplies: supposing a
Lemmas referenced :  rv-add_wf inner-product-space_subtype rv-mul_wf radd_wf rmul_wf rv-ip_wf rsub_wf cosh_wf int-to-real_wf rsqrt_wf radd-non-neg rleq-int false_wf rv-ip-nonneg rleq_wf sinh_wf real_wf ss-point_wf real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis because_Cache natural_numberEquality dependent_functionElimination independent_functionElimination productElimination independent_pairFormation lambdaFormation dependent_set_memberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality instantiate independent_isectElimination

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[e,x:Point].  \mforall{}[t:\mBbbR{}].    (hyptrans(rv;e;t;x)  \mmember{}  Point)



Date html generated: 2017_10_05-AM-00_27_13
Last ObjectModification: 2017_06_21-AM-11_33_45

Theory : inner!product!spaces


Home Index