Nuprl Lemma : hyptrans_wf
∀[rv:InnerProductSpace]. ∀[e,x:Point]. ∀[t:ℝ].  (hyptrans(rv;e;t;x) ∈ Point)
Proof
Definitions occuring in Statement : 
hyptrans: hyptrans(rv;e;t;x)
, 
inner-product-space: InnerProductSpace
, 
real: ℝ
, 
ss-point: Point
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
hyptrans: hyptrans(rv;e;t;x)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
rv-add_wf, 
inner-product-space_subtype, 
rv-mul_wf, 
radd_wf, 
rmul_wf, 
rv-ip_wf, 
rsub_wf, 
cosh_wf, 
int-to-real_wf, 
rsqrt_wf, 
radd-non-neg, 
rleq-int, 
false_wf, 
rv-ip-nonneg, 
rleq_wf, 
sinh_wf, 
real_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
because_Cache, 
natural_numberEquality, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
independent_pairFormation, 
lambdaFormation, 
dependent_set_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
instantiate, 
independent_isectElimination
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[e,x:Point].  \mforall{}[t:\mBbbR{}].    (hyptrans(rv;e;t;x)  \mmember{}  Point)
Date html generated:
2017_10_05-AM-00_27_13
Last ObjectModification:
2017_06_21-AM-11_33_45
Theory : inner!product!spaces
Home
Index