Nuprl Lemma : ip-between-symmetry

[rv:InnerProductSpace]. ∀[a,b,c:Point].  (a_b_c  c_b_a)


Proof




Definitions occuring in Statement :  ip-between: a_b_c inner-product-space: InnerProductSpace ss-point: Point uall: [x:A]. B[x] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q ip-between: a_b_c prop: subtype_rel: A ⊆B and: P ∧ Q guard: {T} uimplies: supposing a uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  ip-between_wf req_witness radd_wf rmul_wf rv-norm_wf rv-sub_wf inner-product-space_subtype real_wf rleq_wf int-to-real_wf req_wf rv-ip_wf ss-point_wf real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf req_functionality radd_functionality rv-ip-symmetry rmul_comm req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution extract_by_obid isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality dependent_functionElimination applyEquality because_Cache setElimination rename setEquality productEquality natural_numberEquality independent_functionElimination instantiate independent_isectElimination isect_memberEquality productElimination

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b,c:Point].    (a\_b\_c  {}\mRightarrow{}  c\_b\_a)



Date html generated: 2017_10_04-PM-11_59_40
Last ObjectModification: 2017_03_09-PM-02_31_32

Theory : inner!product!spaces


Home Index