Nuprl Lemma : ip-between-symmetry
∀[rv:InnerProductSpace]. ∀[a,b,c:Point].  (a_b_c 
⇒ c_b_a)
Proof
Definitions occuring in Statement : 
ip-between: a_b_c
, 
inner-product-space: InnerProductSpace
, 
ss-point: Point
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
ip-between: a_b_c
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
ip-between_wf, 
req_witness, 
radd_wf, 
rmul_wf, 
rv-norm_wf, 
rv-sub_wf, 
inner-product-space_subtype, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
req_wf, 
rv-ip_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
req_functionality, 
radd_functionality, 
rv-ip-symmetry, 
rmul_comm, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
applyEquality, 
because_Cache, 
setElimination, 
rename, 
setEquality, 
productEquality, 
natural_numberEquality, 
independent_functionElimination, 
instantiate, 
independent_isectElimination, 
isect_memberEquality, 
productElimination
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b,c:Point].    (a\_b\_c  {}\mRightarrow{}  c\_b\_a)
Date html generated:
2017_10_04-PM-11_59_40
Last ObjectModification:
2017_03_09-PM-02_31_32
Theory : inner!product!spaces
Home
Index