Nuprl Lemma : rv-unit-squared
∀[rv:InnerProductSpace]. ∀[x:Point].  rv-unit(rv;x)^2 = r1 supposing x # 0
Proof
Definitions occuring in Statement : 
rv-unit: rv-unit(rv;x)
, 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
rv-0: 0
, 
ss-sep: x # y
, 
ss-point: Point
, 
req: x = y
, 
int-to-real: r(n)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
guard: {T}
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rv-0_wf, 
ss-sep_wf, 
separation-space_wf, 
real-vector-space_wf, 
inner-product-space_wf, 
subtype_rel_transitivity, 
inner-product-space_subtype, 
real-vector-space_subtype1, 
req_witness, 
equal_wf, 
sq_stable__req, 
int-to-real_wf, 
rv-ip_wf, 
req_wf, 
ss-point_wf, 
set_wf, 
rv-unit_wf
Rules used in proof : 
isect_memberEquality, 
instantiate, 
setEquality, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
independent_functionElimination, 
rename, 
setElimination, 
lambdaFormation, 
natural_numberEquality, 
lambdaEquality, 
sqequalRule, 
because_Cache, 
applyEquality, 
hypothesis, 
independent_isectElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x:Point].    rv-unit(rv;x)\^{}2  =  r1  supposing  x  \#  0
Date html generated:
2016_11_08-AM-09_17_01
Last ObjectModification:
2016_10_31-PM-05_04_48
Theory : inner!product!spaces
Home
Index