Nuprl Lemma : rv-unit-squared

[rv:InnerProductSpace]. ∀[x:Point].  rv-unit(rv;x)^2 r1 supposing 0


Proof




Definitions occuring in Statement :  rv-unit: rv-unit(rv;x) rv-ip: x ⋅ y inner-product-space: InnerProductSpace rv-0: 0 ss-sep: y ss-point: Point req: y int-to-real: r(n) uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  guard: {T} squash: T sq_stable: SqStable(P) implies:  Q all: x:A. B[x] so_apply: x[s] prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rv-0_wf ss-sep_wf separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity inner-product-space_subtype real-vector-space_subtype1 req_witness equal_wf sq_stable__req int-to-real_wf rv-ip_wf req_wf ss-point_wf set_wf rv-unit_wf
Rules used in proof :  isect_memberEquality instantiate setEquality dependent_functionElimination equalitySymmetry equalityTransitivity imageElimination baseClosed imageMemberEquality independent_functionElimination rename setElimination lambdaFormation natural_numberEquality lambdaEquality sqequalRule because_Cache applyEquality hypothesis independent_isectElimination hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x:Point].    rv-unit(rv;x)\^{}2  =  r1  supposing  x  \#  0



Date html generated: 2016_11_08-AM-09_17_01
Last ObjectModification: 2016_10_31-PM-05_04_48

Theory : inner!product!spaces


Home Index