Nuprl Lemma : trans-apply_functionality
∀[rv:InnerProductSpace]. ∀[T:ℝ ⟶ Point ⟶ Point].
  ∀[x1,x2:Point]. ∀[t1,t2:ℝ].  (T_t1(x1) ≡ T_t2(x2)) supposing ((t1 = t2) and x1 ≡ x2) 
  supposing ∃e:Point. translation-group-fun(rv;e;T)
Proof
Definitions occuring in Statement : 
trans-apply: T_t(x)
, 
translation-group-fun: translation-group-fun(rv;e;T)
, 
inner-product-space: InnerProductSpace
, 
req: x = y
, 
real: ℝ
, 
ss-eq: x ≡ y
, 
ss-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
translation-group-fun: translation-group-fun(rv;e;T)
, 
and: P ∧ Q
, 
ss-eq: x ≡ y
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
trans-apply: T_t(x)
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
false: False
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
ss-sep_wf, 
trans-apply_wf, 
real_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
req_wf, 
ss-eq_wf, 
ss-point_wf, 
exists_wf, 
translation-group-fun_wf, 
rneq_irreflexivity, 
rneq_functionality, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lambdaFormation, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
unionElimination, 
extract_by_obid, 
isectElimination, 
applyEquality, 
because_Cache, 
sqequalRule, 
functionExtensionality, 
lambdaEquality, 
instantiate, 
independent_isectElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
voidElimination
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[T:\mBbbR{}  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point].
    \mforall{}[x1,x2:Point].  \mforall{}[t1,t2:\mBbbR{}].    (T\_t1(x1)  \mequiv{}  T\_t2(x2))  supposing  ((t1  =  t2)  and  x1  \mequiv{}  x2) 
    supposing  \mexists{}e:Point.  translation-group-fun(rv;e;T)
Date html generated:
2017_10_05-AM-00_21_23
Last ObjectModification:
2017_06_24-PM-04_08_26
Theory : inner!product!spaces
Home
Index