Nuprl Lemma : free-dlwc-1-join-irreducible

T:Type. ∀eq:EqDecider(T). ∀Cs:T ⟶ fset(fset(T)). ∀x,y:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])).
  (x ∨ 1 ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
  ⇐⇒ (x 1 ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))
      ∨ (y 1 ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))))


Proof




Definitions occuring in Statement :  free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) lattice-1: 1 lattice-join: a ∨ b lattice-point: Point(l) fset: fset(T) deq: EqDecider(T) so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice uimplies: supposing a rev_implies:  Q or: P ∨ Q guard: {T} top: Top fset-constrained-ac-lub: lub(P;ac1;ac2) fset-ac-lub: fset-ac-lub(eq;ac1;ac2) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uiff: uiff(P;Q) squash: T true: True
Lemmas referenced :  equal_wf lattice-point_wf free-dist-lattice-with-constraints_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf lattice-1_wf bdd-distributive-lattice_wf or_wf fset_wf deq_wf free-dlwc-1 free-dlwc-join free-dlwc-point member-fset-minimals deq-fset_wf f-proper-subset-dec_wf fset-union_wf empty-fset_wf member-fset-union squash_wf true_wf lattice-join-1 bdd-distributive-lattice-subtype-bdd-lattice iff_weakening_equal lattice-1-join
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality because_Cache hypothesis instantiate productEquality universeEquality independent_isectElimination setElimination rename functionEquality dependent_functionElimination equalityTransitivity equalitySymmetry productElimination independent_functionElimination unionElimination inlFormation inrFormation isect_memberEquality voidElimination voidEquality imageElimination equalityUniverse levelHypothesis natural_numberEquality imageMemberEquality baseClosed hyp_replacement applyLambdaEquality

Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}Cs:T  {}\mrightarrow{}  fset(fset(T)).
\mforall{}x,y:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])).
    (x  \mvee{}  y  =  1  \mLeftarrow{}{}\mRightarrow{}  (x  =  1)  \mvee{}  (y  =  1))



Date html generated: 2017_10_05-AM-00_37_08
Last ObjectModification: 2017_07_28-AM-09_15_23

Theory : lattices


Home Index