Nuprl Lemma : free-dlwc-1

[T:Type]
  ∀eq:EqDecider(T). ∀Cs:T ⟶ fset(fset(T)). ∀x:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])).
    (x 1 ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])) ⇐⇒ {} ∈ x)


Proof




Definitions occuring in Statement :  free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) lattice-1: 1 lattice-point: Point(l) deq-fset: deq-fset(eq) empty-fset: {} fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] lattice-1: 1 record-select: r.x free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y btrue: tt fset-singleton: {x} cons: [a b] empty-fset: {} nil: [] it: top: Top so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q implies:  Q uiff: uiff(P;Q) uimplies: supposing a prop: rev_implies:  Q subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice cand: c∧ B bool: 𝔹 unit: Unit bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A f-proper-subset: xs ⊆≠ ys f-subset: xs ⊆ ys squash: T true: True
Lemmas referenced :  free-dlwc-point member-fset-singleton fset_wf deq-fset_wf empty-fset_wf fset-member_wf equal-wf-T-base assert_wf fset-antichain_wf fset-all_wf fset-contains-none_wf lattice-point_wf free-dist-lattice-with-constraints_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf deq_wf fset-member_witness lattice-1_wf bdd-distributive-lattice_wf assert-fset-antichain fset-extensionality fset-singleton_wf fset-null_wf bool_wf eqtt_to_assert assert-fset-null eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot equal-wf-base-T mem_empty_lemma squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalRule sqequalHypSubstitution extract_by_obid isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis independent_pairFormation cumulativity hypothesisEquality because_Cache productElimination independent_isectElimination hyp_replacement equalitySymmetry applyLambdaEquality setElimination rename setEquality productEquality lambdaEquality applyEquality functionExtensionality baseClosed instantiate universeEquality functionEquality dependent_functionElimination independent_pairEquality independent_functionElimination axiomEquality dependent_set_memberEquality equalityTransitivity unionElimination equalityElimination dependent_pairFormation promote_hyp imageElimination natural_numberEquality imageMemberEquality

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}Cs:T  {}\mrightarrow{}  fset(fset(T)).
    \mforall{}x:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])).
        (x  =  1  \mLeftarrow{}{}\mRightarrow{}  \{\}  \mmember{}  x)



Date html generated: 2017_10_05-AM-00_37_03
Last ObjectModification: 2017_07_28-AM-09_15_20

Theory : lattices


Home Index