Nuprl Lemma : sum-in-vs-single

[n:ℤ]. ∀[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[f:{n..n 1-} ⟶ Point(vs)].  {f[i] n≤i≤n} f[n] ∈ Point(vs))


Proof




Definitions occuring in Statement :  sum-in-vs: Σ{f[i] n≤i≤m} vector-space: VectorSpace(K) vs-point: Point(vs) int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] add: m natural_number: $n int: equal: t ∈ T rng: Rng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sum-in-vs: Σ{f[i] n≤i≤m} from-upto: [n, m) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  has-value: (a)↓ not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q vs-bag-add: Σ{f[b] b ∈ bs} bag-summation: Σ(x∈b). f[x] bag-accum: bag-accum(v,x.f[v; x];init;bs) list_accum: list_accum cons: [a b] nil: [] vs-add: y record-select: r.x so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) rng: Rng
Lemmas referenced :  lt_int_wf eqtt_to_assert assert_of_lt_int value-type-has-value int-value-type full-omega-unsat intformless_wf itermAdd_wf itermVar_wf itermConstant_wf istype-int int_formula_prop_less_lemma istype-void int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf istype-less_than intformnot_wf int_formula_prop_not_lemma vs-mon_ident decidable__le intformle_wf int_formula_prop_le_lemma decidable__lt istype-le int_seg_wf vs-point_wf vector-space_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality addEquality natural_numberEquality hypothesis inhabitedIsType lambdaFormation_alt unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination callbyvalueReduce intEquality because_Cache approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination universeIsType equalityIstype promote_hyp instantiate cumulativity applyEquality dependent_set_memberEquality_alt independent_pairFormation productIsType functionIsType setElimination rename axiomEquality isectIsTypeImplies

Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[f:\{n..n  +  1\msupminus{}\}  {}\mrightarrow{}  Point(vs)].    (\mSigma{}\{f[i]  |  n\mleq{}i\mleq{}n\}  =  f[n])



Date html generated: 2019_10_31-AM-06_26_23
Last ObjectModification: 2019_08_08-PM-00_18_59

Theory : linear!algebra


Home Index