Nuprl Lemma : sum-in-vs-single
∀[n:ℤ]. ∀[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[f:{n..n + 1-} ⟶ Point(vs)].  (Σ{f[i] | n≤i≤n} = f[n] ∈ Point(vs))
Proof
Definitions occuring in Statement : 
sum-in-vs: Σ{f[i] | n≤i≤m}
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
, 
rng: Rng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
sum-in-vs: Σ{f[i] | n≤i≤m}
, 
from-upto: [n, m)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
has-value: (a)↓
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
bfalse: ff
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
vs-bag-add: Σ{f[b] | b ∈ bs}
, 
bag-summation: Σ(x∈b). f[x]
, 
bag-accum: bag-accum(v,x.f[v; x];init;bs)
, 
list_accum: list_accum, 
cons: [a / b]
, 
nil: []
, 
vs-add: x + y
, 
record-select: r.x
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
rng: Rng
Lemmas referenced : 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
value-type-has-value, 
int-value-type, 
full-omega-unsat, 
intformless_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_less_lemma, 
istype-void, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
istype-less_than, 
intformnot_wf, 
int_formula_prop_not_lemma, 
vs-mon_ident, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
decidable__lt, 
istype-le, 
int_seg_wf, 
vs-point_wf, 
vector-space_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
addEquality, 
natural_numberEquality, 
hypothesis, 
inhabitedIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
callbyvalueReduce, 
intEquality, 
because_Cache, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
universeIsType, 
equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity, 
applyEquality, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
productIsType, 
functionIsType, 
setElimination, 
rename, 
axiomEquality, 
isectIsTypeImplies
Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[f:\{n..n  +  1\msupminus{}\}  {}\mrightarrow{}  Point(vs)].    (\mSigma{}\{f[i]  |  n\mleq{}i\mleq{}n\}  =  f[n])
Date html generated:
2019_10_31-AM-06_26_23
Last ObjectModification:
2019_08_08-PM-00_18_59
Theory : linear!algebra
Home
Index