Nuprl Lemma : vs-map-quotient
∀[K:CRng]. ∀[A,B:VectorSpace(K)]. ∀[P:Point(A) ⟶ ℙ].
  ∀[f:A ⟶ B]. f ∈ A//z.P[z] ⟶ B supposing ∀a:Point(A). (P[a] 
⇒ ((f a) = 0 ∈ Point(B))) 
  supposing vs-subspace(K;A;z.P[z])
Proof
Definitions occuring in Statement : 
vs-quotient: vs//z.P[z]
, 
vs-map: A ⟶ B
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
vs-0: 0
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
crng: CRng
, 
rng: Rng
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
vs-map: A ⟶ B
, 
prop: ℙ
, 
true: True
, 
squash: ↓T
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
vs-point: Point(vs)
, 
record-select: r.x
, 
vs-quotient: vs//z.P[z]
, 
mk-vs: mk-vs, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
quotient: x,y:A//B[x; y]
, 
eq-mod-subspace: x = y mod (z.P[z])
, 
vs-add: x + y
, 
vs-0: 0
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
sym: Sym(T;x,y.E[x; y])
, 
trans: Trans(T;x,y.E[x; y])
, 
ext-eq: A ≡ B
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
vs-mul: a * x
Lemmas referenced : 
vs-map-quotients, 
equal_wf, 
vs-point_wf, 
vs-0_wf, 
rng_car_wf, 
vs-map_wf, 
vs-subspace_wf, 
vector-space_wf, 
crng_wf, 
vs-zero-add, 
iff_weakening_equal, 
vs-zero-mul, 
squash_wf, 
true_wf, 
istype-universe, 
vs-add_wf, 
rng_sig_wf, 
subtype_rel_self, 
vs-mul_wf, 
vs-neg_wf, 
vs-add-neg, 
vs-add-cancel, 
subtype_quotient, 
quotient_wf, 
vs-quotient_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
setElimination, 
rename, 
because_Cache, 
universeIsType, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation_alt, 
equalityIstype, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
applyEquality, 
axiomEquality, 
functionIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeEquality, 
natural_numberEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
productElimination, 
instantiate, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
promote_hyp, 
productIsType, 
sqequalBase, 
applyLambdaEquality, 
dependent_set_memberEquality_alt, 
functionExtensionality, 
hyp_replacement
Latex:
\mforall{}[K:CRng].  \mforall{}[A,B:VectorSpace(K)].  \mforall{}[P:Point(A)  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}[f:A  {}\mrightarrow{}  B].  f  \mmember{}  A//z.P[z]  {}\mrightarrow{}  B  supposing  \mforall{}a:Point(A).  (P[a]  {}\mRightarrow{}  ((f  a)  =  0)) 
    supposing  vs-subspace(K;A;z.P[z])
Date html generated:
2019_10_31-AM-06_28_04
Last ObjectModification:
2019_08_20-PM-02_13_40
Theory : linear!algebra
Home
Index