Nuprl Lemma : vs-map-quotients

[K:CRng]. ∀[A,B:VectorSpace(K)]. ∀[P:Point(A) ⟶ ℙ]. ∀[Q:Point(B) ⟶ ℙ].
  ∀[f:A ⟶ B]. f ∈ A//z.P[z] ⟶ B//z.Q[z] supposing ∀a:Point(A). (P[a]  Q[f a]) 
  supposing vs-subspace(K;A;z.P[z]) ∧ vs-subspace(K;B;z.Q[z])


Proof




Definitions occuring in Statement :  vs-quotient: vs//z.P[z] vs-map: A ⟶ B vs-subspace: vs-subspace(K;vs;x.P[x]) vector-space: VectorSpace(K) vs-point: Point(vs) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T apply: a function: x:A ⟶ B[x] crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T vs-map: A ⟶ B and: P ∧ Q all: x:A. B[x] crng: CRng rng: Rng so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q subtype_rel: A ⊆B prop: eq-mod-subspace: mod (z.P[z]) quotient: x,y:A//B[x; y] so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] btrue: tt bfalse: ff ifthenelse: if then else fi  eq_atom: =a y top: Top mk-vs: mk-vs vs-point: Point(vs) vs-quotient: vs//z.P[z] guard: {T} true: True vs-neg: -(x) squash: T iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B vs-add: y vs-subspace: vs-subspace(K;vs;x.P[x]) vs-mul: x
Lemmas referenced :  vs-point_wf vs-quotient_wf vs-add_wf rng_car_wf vs-mul_wf subtype_rel_self vs-map_wf vs-subspace_wf vector-space_wf crng_wf quotient-member-eq eq-mod-subspace-equiv eq-mod-subspace_wf quotient_wf istype-void rec_select_update_lemma vs-neg_wf rng_one_wf rng_minus_wf equal_wf squash_wf true_wf istype-universe rng_sig_wf iff_weakening_equal vs-add-assoc vs-neg-add2 vs-ac_1 vs-add-comm-nu vs-mul-linear crng_times_comm vs-mul-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality_alt equalityTransitivity hypothesis equalitySymmetry sqequalRule productIsType functionIsType universeIsType productElimination introduction extract_by_obid isectElimination because_Cache hypothesisEquality lambdaEquality_alt applyEquality independent_isectElimination equalityIstype instantiate universeEquality dependent_functionElimination functionExtensionality sqequalBase promote_hyp pertypeElimination independent_functionElimination inhabitedIsType pointwiseFunctionalityForEquality voidElimination isect_memberEquality_alt applyLambdaEquality hyp_replacement natural_numberEquality imageElimination imageMemberEquality baseClosed lambdaFormation_alt independent_pairFormation Error :memTop

Latex:
\mforall{}[K:CRng].  \mforall{}[A,B:VectorSpace(K)].  \mforall{}[P:Point(A)  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[Q:Point(B)  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}[f:A  {}\mrightarrow{}  B].  f  \mmember{}  A//z.P[z]  {}\mrightarrow{}  B//z.Q[z]  supposing  \mforall{}a:Point(A).  (P[a]  {}\mRightarrow{}  Q[f  a]) 
    supposing  vs-subspace(K;A;z.P[z])  \mwedge{}  vs-subspace(K;B;z.Q[z])



Date html generated: 2020_05_20-PM-01_18_26
Last ObjectModification: 2020_01_03-AM-00_51_15

Theory : linear!algebra


Home Index