Nuprl Lemma : mkibs_wf
∀[p:ℕ ⟶ 𝔹]. mkibs(n.p[n]) ∈ IBS supposing ∀n:ℕ. ((↑p[n]) 
⇒ (↑p[n + 1]))
Proof
Definitions occuring in Statement : 
mkibs: mkibs(n.p[n])
, 
incr-binary-seq: IBS
, 
nat: ℕ
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
incr-binary-seq: IBS
, 
mkibs: mkibs(n.p[n])
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
false: False
, 
subtype_rel: A ⊆r B
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
ifthenelse_wf, 
int_seg_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-le, 
istype-less_than, 
istype-nat, 
intformand_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
istype-assert, 
bool_wf, 
eqtt_to_assert, 
istype-false, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
add-commutes, 
assert_elim, 
not_assert_elim, 
btrue_neq_bfalse
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
setElimination, 
rename, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
universeIsType, 
productIsType, 
lambdaFormation_alt, 
because_Cache, 
functionIsType, 
addEquality, 
int_eqEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectIsTypeImplies, 
inhabitedIsType, 
equalityElimination, 
productElimination, 
equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity
Latex:
\mforall{}[p:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  mkibs(n.p[n])  \mmember{}  IBS  supposing  \mforall{}n:\mBbbN{}.  ((\muparrow{}p[n])  {}\mRightarrow{}  (\muparrow{}p[n  +  1]))
Date html generated:
2019_10_30-AM-10_15_48
Last ObjectModification:
2019_06_28-PM-01_55_39
Theory : real!vectors
Home
Index