Nuprl Lemma : mkibs_wf

[p:ℕ ⟶ 𝔹]. mkibs(n.p[n]) ∈ IBS supposing ∀n:ℕ((↑p[n])  (↑p[n 1]))


Proof




Definitions occuring in Statement :  mkibs: mkibs(n.p[n]) incr-binary-seq: IBS nat: assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a incr-binary-seq: IBS mkibs: mkibs(n.p[n]) so_apply: x[s] int_seg: {i..j-} nat: ge: i ≥  lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: false: False subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  le: A ≤ B less_than': less_than'(a;b) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b
Lemmas referenced :  ifthenelse_wf int_seg_wf nat_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than istype-nat intformand_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_term_value_add_lemma int_term_value_var_lemma istype-assert bool_wf eqtt_to_assert istype-false eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot add-commutes assert_elim not_assert_elim btrue_neq_bfalse
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt lambdaEquality_alt extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality natural_numberEquality hypothesis setElimination rename independent_pairFormation dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt isect_memberEquality_alt voidElimination sqequalRule universeIsType productIsType lambdaFormation_alt because_Cache functionIsType addEquality int_eqEquality axiomEquality equalityTransitivity equalitySymmetry isectIsTypeImplies inhabitedIsType equalityElimination productElimination equalityIstype promote_hyp instantiate cumulativity

Latex:
\mforall{}[p:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  mkibs(n.p[n])  \mmember{}  IBS  supposing  \mforall{}n:\mBbbN{}.  ((\muparrow{}p[n])  {}\mRightarrow{}  (\muparrow{}p[n  +  1]))



Date html generated: 2019_10_30-AM-10_15_48
Last ObjectModification: 2019_06_28-PM-01_55_39

Theory : real!vectors


Home Index