Nuprl Lemma : fractions-req
∀[a,b,c,d:ℝ].  (c ≠ r0 
⇒ d ≠ r0 
⇒ uiff((a/c) = (b/d);(a * d) = (b * c)))
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
rneq: x ≠ y
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rmul_wf, 
req_wf, 
rdiv_wf, 
rneq_wf, 
int-to-real_wf, 
real_wf, 
rmul_preserves_req, 
req_weakening, 
req_functionality, 
rmul_functionality, 
rmul-rdiv-cancel2, 
uiff_transitivity, 
req_inversion, 
rmul-assoc, 
req_transitivity, 
rmul-ac, 
rmul_comm, 
rmul-rdiv-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
independent_isectElimination, 
natural_numberEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[a,b,c,d:\mBbbR{}].    (c  \mneq{}  r0  {}\mRightarrow{}  d  \mneq{}  r0  {}\mRightarrow{}  uiff((a/c)  =  (b/d);(a  *  d)  =  (b  *  c)))
Date html generated:
2017_10_03-AM-08_38_43
Last ObjectModification:
2017_03_27-AM-01_00_51
Theory : reals
Home
Index