Nuprl Lemma : fractions-req

[a,b,c,d:ℝ].  (c ≠ r0  d ≠ r0  uiff((a/c) (b/d);(a d) (b c)))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rneq: x ≠ y req: y rmul: b int-to-real: r(n) real: uiff: uiff(P;Q) uall: [x:A]. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rmul_wf req_wf rdiv_wf rneq_wf int-to-real_wf real_wf rmul_preserves_req req_weakening req_functionality rmul_functionality rmul-rdiv-cancel2 uiff_transitivity req_inversion rmul-assoc req_transitivity rmul-ac rmul_comm rmul-rdiv-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination independent_isectElimination natural_numberEquality sqequalRule lambdaEquality dependent_functionElimination productElimination independent_pairEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}[a,b,c,d:\mBbbR{}].    (c  \mneq{}  r0  {}\mRightarrow{}  d  \mneq{}  r0  {}\mRightarrow{}  uiff((a/c)  =  (b/d);(a  *  d)  =  (b  *  c)))



Date html generated: 2017_10_03-AM-08_38_43
Last ObjectModification: 2017_03_27-AM-01_00_51

Theory : reals


Home Index