Nuprl Lemma : imonomial-cons-req
∀v:ℤ List. ∀u,a:ℤ. ∀f:ℤ ⟶ ℝ.  (real_term_value(f;imonomial-term(<a, [u / v]>)) = ((f u) * real_term_value(f;imonomial-t\000Cerm(<a, v>))))
Proof
Definitions occuring in Statement : 
real_term_value: real_term_value(f;t)
, 
req: x = y
, 
rmul: a * b
, 
real: ℝ
, 
imonomial-term: imonomial-term(m)
, 
cons: [a / b]
, 
list: T List
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
imonomial-term: imonomial-term(m)
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
real_term_value: real_term_value(f;t)
, 
itermMultiply: left (*) right
, 
int_term_ind: int_term_ind, 
itermConstant: "const"
, 
itermVar: vvar
, 
implies: P 
⇒ Q
Lemmas referenced : 
real_wf, 
list_wf, 
real_term_value_wf, 
imonomial-term_wf, 
cons_wf, 
rmul_wf, 
int-to-real_wf, 
rmul-ac, 
req_functionality, 
imonomial-term-linear-req, 
rmul_functionality, 
req_weakening, 
list_accum_cons_lemma, 
list_accum_wf, 
int_term_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
req_wf, 
imonomial-req-lemma, 
uiff_transitivity, 
req_inversion, 
rmul-assoc, 
rmul-one-both
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
functionEquality, 
intEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionExtensionality, 
applyEquality, 
hypothesisEquality, 
independent_pairEquality, 
natural_numberEquality, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
productElimination, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaEquality, 
independent_functionElimination
Latex:
\mforall{}v:\mBbbZ{}  List.  \mforall{}u,a:\mBbbZ{}.  \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbR{}.    (real\_term\_value(f;imonomial-term(<a,  [u  /  v]>))  =  ((f  u)  *  real\_term\000C\_value(f;imonomial-term(<a,  v>))))
Date html generated:
2017_10_02-PM-07_19_48
Last ObjectModification:
2017_07_28-AM-07_21_27
Theory : reals
Home
Index