Nuprl Lemma : int-rinv-cancel2

[a:ℤ]. ∀[b:ℤ-o].  ((r(a b) rinv(r(b))) r(a))


Proof




Definitions occuring in Statement :  rinv: rinv(x) req: y rmul: b int-to-real: r(n) int_nzero: -o uall: [x:A]. B[x] multiply: m int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_nzero: -o implies:  Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q not: ¬A nequal: a ≠ b ∈  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rmul_wf int-to-real_wf rinv_wf2 rneq-int int_nzero_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_not_lemma int_formula_prop_wf equal-wf-T-base int_nzero_wf req_wf rmul-one uiff_transitivity req_functionality rmul_functionality req_inversion rmul-int req_weakening rmul_assoc rmul-rinv1 rnonzero-iff equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin multiplyEquality hypothesisEquality setElimination rename because_Cache hypothesis independent_functionElimination dependent_functionElimination natural_numberEquality productElimination lambdaFormation independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll baseClosed

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[b:\mBbbZ{}\msupminus{}\msupzero{}].    ((r(a  *  b)  *  rinv(r(b)))  =  r(a))



Date html generated: 2017_10_03-AM-08_34_36
Last ObjectModification: 2017_04_05-PM-04_23_53

Theory : reals


Home Index