Nuprl Lemma : radd-list-rabs
∀L:ℝ List. (|radd-list(L)| ≤ radd-list(map(λx.|x|;L)))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y, 
rabs: |x|, 
radd-list: radd-list(L), 
real: ℝ, 
map: map(f;as), 
list: T List, 
all: ∀x:A. B[x], 
lambda: λx.A[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
top: Top, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
istype: istype(T), 
not: ¬A, 
false: False, 
absval: |i|, 
less_than': less_than'(a;b), 
le: A ≤ B, 
nat: ℕ, 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
guard: {T}, 
true: True, 
prop: ℙ, 
squash: ↓T, 
rev_uimplies: rev_uimplies(P;Q), 
rge: x ≥ y, 
uiff: uiff(P;Q)
Lemmas referenced : 
list_induction, 
real_wf, 
radd_list_nil_lemma, 
map_nil_lemma, 
istype-void, 
map_cons_lemma, 
list_wf, 
rleq_wf, 
rabs_wf, 
radd-list_wf-bag, 
list-subtype-bag, 
map_wf, 
bag_qinc, 
false_wf, 
nat_wf, 
absval_wf, 
rleq-int, 
iff_weakening_equal, 
int-to-real_wf, 
rabs-int, 
true_wf, 
squash_wf, 
radd_wf, 
cons_wf, 
rleq_weakening_equal, 
uimplies_transitivity, 
rleq_functionality_wrt_implies, 
radd_functionality_wrt_rleq, 
r-triangle-inequality, 
rleq_functionality, 
rabs_functionality, 
radd-list-cons
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesis, 
sqequalRule, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
rename, 
universeIsType, 
because_Cache, 
hypothesisEquality, 
lambdaEquality_alt, 
applyEquality, 
independent_isectElimination, 
lambdaFormation, 
independent_pairFormation, 
setElimination, 
productElimination, 
universeEquality, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
lambdaEquality, 
inhabitedIsType, 
equalityIsType1
Latex:
\mforall{}L:\mBbbR{}  List.  (|radd-list(L)|  \mleq{}  radd-list(map(\mlambda{}x.|x|;L)))
Date html generated:
2019_10_29-AM-09_38_30
Last ObjectModification:
2018_11_10-PM-01_29_31
Theory : reals
Home
Index