Nuprl Lemma : rat2real-qavg-2
∀[a,b:ℚ].  ((r(2) * rat2real(qavg(a;b))) = (rat2real(a) + rat2real(b)))
Proof
Definitions occuring in Statement : 
rat2real: rat2real(q), 
req: x = y, 
rmul: a * b, 
radd: a + b, 
int-to-real: r(n), 
uall: ∀[x:A]. B[x], 
natural_number: $n, 
qavg: qavg(a;b), 
rationals: ℚ
Definitions unfolded in proof : 
rev_uimplies: rev_uimplies(P;Q), 
uiff: uiff(P;Q), 
pi2: snd(t), 
rtermDivide: num "/" denom, 
rtermConstant: "const", 
rtermMultiply: left "*" right, 
pi1: fst(t), 
rtermVar: rtermVar(var), 
rat_term_ind: rat_term_ind, 
rtermAdd: left "+" right, 
rat_term_to_real: rat_term_to_real(f;t), 
not: ¬A, 
false: False, 
prop: ℙ, 
true: True, 
less_than': less_than'(a;b), 
squash: ↓T, 
less_than: a < b, 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
all: ∀x:A. B[x], 
or: P ∨ Q, 
guard: {T}, 
rneq: x ≠ y, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rat2real-qavg, 
req_weakening, 
rmul_functionality, 
req_functionality, 
istype-int, 
rtermVar_wf, 
rtermAdd_wf, 
rtermDivide_wf, 
rtermConstant_wf, 
rtermMultiply_wf, 
assert-rat-term-eq2, 
rless_wf, 
rless-int, 
rdiv_wf, 
rationals_wf, 
radd_wf, 
qavg_wf, 
rat2real_wf, 
int-to-real_wf, 
rmul_wf, 
req_witness
Rules used in proof : 
approximateComputation, 
int_eqEquality, 
lambdaEquality_alt, 
baseClosed, 
imageMemberEquality, 
independent_pairFormation, 
productElimination, 
dependent_functionElimination, 
inrFormation_alt, 
independent_isectElimination, 
closedConclusion, 
universeIsType, 
isectIsTypeImplies, 
because_Cache, 
isect_memberEquality_alt, 
sqequalRule, 
inhabitedIsType, 
independent_functionElimination, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[a,b:\mBbbQ{}].    ((r(2)  *  rat2real(qavg(a;b)))  =  (rat2real(a)  +  rat2real(b)))
 Date html generated: 
2019_10_31-AM-05_57_40
 Last ObjectModification: 
2019_10_30-PM-02_58_18
Theory : reals
Home
Index