Nuprl Lemma : rat2real-qavg-2

[a,b:ℚ].  ((r(2) rat2real(qavg(a;b))) (rat2real(a) rat2real(b)))


Proof




Definitions occuring in Statement :  rat2real: rat2real(q) req: y rmul: b radd: b int-to-real: r(n) uall: [x:A]. B[x] natural_number: $n qavg: qavg(a;b) rationals:
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) pi2: snd(t) rtermDivide: num "/" denom rtermConstant: "const" rtermMultiply: left "*" right pi1: fst(t) rtermVar: rtermVar(var) rat_term_ind: rat_term_ind rtermAdd: left "+" right rat_term_to_real: rat_term_to_real(f;t) not: ¬A false: False prop: true: True less_than': less_than'(a;b) squash: T less_than: a < b rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] or: P ∨ Q guard: {T} rneq: x ≠ y uimplies: supposing a implies:  Q member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rat2real-qavg req_weakening rmul_functionality req_functionality istype-int rtermVar_wf rtermAdd_wf rtermDivide_wf rtermConstant_wf rtermMultiply_wf assert-rat-term-eq2 rless_wf rless-int rdiv_wf rationals_wf radd_wf qavg_wf rat2real_wf int-to-real_wf rmul_wf req_witness
Rules used in proof :  approximateComputation int_eqEquality lambdaEquality_alt baseClosed imageMemberEquality independent_pairFormation productElimination dependent_functionElimination inrFormation_alt independent_isectElimination closedConclusion universeIsType isectIsTypeImplies because_Cache isect_memberEquality_alt sqequalRule inhabitedIsType independent_functionElimination hypothesisEquality hypothesis natural_numberEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[a,b:\mBbbQ{}].    ((r(2)  *  rat2real(qavg(a;b)))  =  (rat2real(a)  +  rat2real(b)))



Date html generated: 2019_10_31-AM-05_57_40
Last ObjectModification: 2019_10_30-PM-02_58_18

Theory : reals


Home Index