Nuprl Lemma : rdiv_functionality_wrt_rleq2
∀[x,y,z,w:ℝ].  ((x/w) ≤ (z/y)) supposing ((x ≤ z) and (y ≤ w) and ((r0 < y) ∧ ((r0 ≤ x) ∨ (r0 ≤ z))))
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rless: x < y
, 
int-to-real: r(n)
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
not: ¬A
, 
false: False
, 
subtype_rel: A ⊆r B
, 
rdiv: (x/y)
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
top: Top
, 
rge: x ≥ y
, 
cand: A c∧ B
Lemmas referenced : 
rmul_preserves_rleq, 
rdiv_wf, 
rless_transitivity1, 
less_than'_wf, 
rsub_wf, 
rless_wf, 
int-to-real_wf, 
nat_plus_wf, 
rleq_wf, 
or_wf, 
real_wf, 
rmul_wf, 
rinv_wf2, 
uiff_transitivity, 
rleq_functionality, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
req_transitivity, 
rmul-rinv3, 
rinv-mul-as-rdiv, 
req_weakening, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
rmul_functionality_wrt_rleq2, 
rleq_weakening_rless, 
rleq_transitivity, 
rleq_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
sqequalRule, 
hypothesis, 
inrFormation, 
dependent_functionElimination, 
independent_functionElimination, 
lambdaEquality, 
hypothesisEquality, 
independent_pairEquality, 
applyEquality, 
natural_numberEquality, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
productEquality, 
voidElimination, 
computeAll, 
int_eqEquality, 
intEquality, 
voidEquality, 
unionElimination, 
inlFormation, 
independent_pairFormation
Latex:
\mforall{}[x,y,z,w:\mBbbR{}].
    ((x/w)  \mleq{}  (z/y))  supposing  ((x  \mleq{}  z)  and  (y  \mleq{}  w)  and  ((r0  <  y)  \mwedge{}  ((r0  \mleq{}  x)  \mvee{}  (r0  \mleq{}  z))))
Date html generated:
2017_10_03-AM-08_34_44
Last ObjectModification:
2017_04_07-AM-11_26_45
Theory : reals
Home
Index