Nuprl Lemma : rdiv_functionality_wrt_rleq2

[x,y,z,w:ℝ].  ((x/w) ≤ (z/y)) supposing ((x ≤ z) and (y ≤ w) and ((r0 < y) ∧ ((r0 ≤ x) ∨ (r0 ≤ z))))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rleq: x ≤ y rless: x < y int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] or: P ∨ Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q rneq: x ≠ y guard: {T} or: P ∨ Q all: x:A. B[x] implies:  Q prop: uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B not: ¬A false: False subtype_rel: A ⊆B rdiv: (x/y) itermConstant: "const" req_int_terms: t1 ≡ t2 top: Top rge: x ≥ y cand: c∧ B
Lemmas referenced :  rmul_preserves_rleq rdiv_wf rless_transitivity1 less_than'_wf rsub_wf rless_wf int-to-real_wf nat_plus_wf rleq_wf or_wf real_wf rmul_wf rinv_wf2 uiff_transitivity rleq_functionality real_term_polynomial itermSubtract_wf itermMultiply_wf itermVar_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 req_transitivity rmul-rinv3 rinv-mul-as-rdiv req_weakening rleq_functionality_wrt_implies rleq_weakening_equal rmul_functionality_wrt_rleq2 rleq_weakening_rless rleq_transitivity rleq_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin extract_by_obid isectElimination because_Cache independent_isectElimination sqequalRule hypothesis inrFormation dependent_functionElimination independent_functionElimination lambdaEquality hypothesisEquality independent_pairEquality applyEquality natural_numberEquality minusEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality productEquality voidElimination computeAll int_eqEquality intEquality voidEquality unionElimination inlFormation independent_pairFormation

Latex:
\mforall{}[x,y,z,w:\mBbbR{}].
    ((x/w)  \mleq{}  (z/y))  supposing  ((x  \mleq{}  z)  and  (y  \mleq{}  w)  and  ((r0  <  y)  \mwedge{}  ((r0  \mleq{}  x)  \mvee{}  (r0  \mleq{}  z))))



Date html generated: 2017_10_03-AM-08_34_44
Last ObjectModification: 2017_04_07-AM-11_26_45

Theory : reals


Home Index