Nuprl Lemma : rless-implies

x,y:ℝ.  ((x < y)  (∃n:ℕ+. ∀m:ℕ+((n ≤ m)  (5 ≤ ((y m) m)))))


Proof




Definitions occuring in Statement :  rless: x < y real: nat_plus: + le: A ≤ B all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a subtract: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] uall: [x:A]. B[x] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True prop: so_lambda: λ2x.t[x] real: so_apply: x[s] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top le: A ≤ B uiff: uiff(P;Q)
Lemmas referenced :  false_wf int_term_value_subtract_lemma itermSubtract_wf subtract-is-int-iff multiply-is-int-iff mul_cancel_in_le int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermMultiply_wf itermVar_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_plus_properties real_wf rless_wf subtract_wf le_wf nat_plus_wf all_wf less_than_wf mul_nat_plus rless-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis productElimination independent_functionElimination dependent_pairFormation isectElimination dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation introduction imageMemberEquality baseClosed lambdaEquality functionEquality setElimination rename applyEquality multiplyEquality unionElimination independent_isectElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp baseApply closedConclusion

Latex:
\mforall{}x,y:\mBbbR{}.    ((x  <  y)  {}\mRightarrow{}  (\mexists{}n:\mBbbN{}\msupplus{}.  \mforall{}m:\mBbbN{}\msupplus{}.  ((n  \mleq{}  m)  {}\mRightarrow{}  (5  \mleq{}  ((y  m)  -  x  m)))))



Date html generated: 2016_05_18-AM-07_15_32
Last ObjectModification: 2016_01_17-AM-01_53_55

Theory : reals


Home Index