Nuprl Lemma : rminimum-shift

[k,n,m:ℤ]. ∀[x:Top].  rminimum(n;m;i.x[i]) rminimum(n k;m k;i.x[i k]) supposing n ≤ m


Proof




Definitions occuring in Statement :  rminimum: rminimum(n;m;k.x[k]) uimplies: supposing a uall: [x:A]. B[x] top: Top so_apply: x[s] le: A ≤ B subtract: m add: m int: sqequal: t
Definitions unfolded in proof :  iff: ⇐⇒ Q rev_implies:  Q assert: b bnot: ¬bb bfalse: ff uiff: uiff(P;Q) it: unit: Unit bool: 𝔹 btrue: tt ifthenelse: if then else fi  subtract: m lt_int: i <j ge: i ≥  and: P ∧ Q nat: guard: {T} sq_type: SQType(T) prop: top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A or: P ∨ Q decidable: Dec(P) all: x:A. B[x] rminimum: rminimum(n;m;k.x[k]) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  primrec-unroll int_term_value_add_lemma itermAdd_wf less_than_wf assert_wf iff_weakening_uiff assert-bnot bool_subtype_base bool_wf bool_cases_sqequal eqff_to_assert subtract-add-cancel assert_of_lt_int eqtt_to_assert lt_int_wf istype-top subtract-1-ge-0 istype-less_than ge_wf int_formula_prop_less_lemma intformless_wf nat_properties istype-le int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma itermConstant_wf intformle_wf intformand_wf decidable__le subtract_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_subtract_lemma int_formula_prop_eq_lemma istype-void int_formula_prop_not_lemma istype-int itermVar_wf itermSubtract_wf intformeq_wf intformnot_wf full-omega-unsat decidable__equal_int int_subtype_base subtype_base_sq
Rules used in proof :  promote_hyp productElimination equalityElimination isectIsTypeImplies equalityIstype functionIsTypeImplies axiomSqEquality intWeakElimination rename setElimination lambdaFormation_alt inhabitedIsType independent_pairFormation dependent_set_memberEquality_alt equalitySymmetry equalityTransitivity universeIsType sqequalRule voidElimination isect_memberEquality_alt hypothesisEquality int_eqEquality lambdaEquality_alt dependent_pairFormation_alt independent_functionElimination approximateComputation natural_numberEquality unionElimination because_Cache dependent_functionElimination hypothesis independent_isectElimination intEquality cumulativity isectElimination sqequalHypSubstitution extract_by_obid instantiate thin cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k,n,m:\mBbbZ{}].  \mforall{}[x:Top].    rminimum(n;m;i.x[i])  \msim{}  rminimum(n  -  k;m  -  k;i.x[i  +  k])  supposing  n  \mleq{}  m



Date html generated: 2019_11_06-PM-00_30_22
Last ObjectModification: 2019_11_05-PM-00_10_22

Theory : reals


Home Index