Nuprl Lemma : rv-weak-triangle-inequality
∀n:ℕ. ∀a,b,x,p:ℝ^n.  (ax=ab 
⇒ a-x-p 
⇒ p ≠ b)
Proof
Definitions occuring in Statement : 
rv-between: a-b-c
, 
real-vec-sep: a ≠ b
, 
rv-congruent: ab=cd
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
real-vec-sep: a ≠ b
, 
rv-congruent: ab=cd
, 
rv-between: a-b-c
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rge: x ≥ y
, 
guard: {T}
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
Lemmas referenced : 
real-vec-dist-between, 
rv-between_wf, 
rv-congruent_wf, 
real-vec_wf, 
nat_wf, 
real-vec-triangle-inequality, 
real-vec-dist_wf, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
radd_wf, 
rleq_functionality, 
req_weakening, 
radd_functionality, 
radd-preserves-rleq, 
rminus_wf, 
rmul_wf, 
uiff_transitivity, 
req_transitivity, 
rminus-as-rmul, 
radd-assoc, 
req_inversion, 
rmul-identity1, 
rmul-distrib2, 
rmul_functionality, 
radd-int, 
rmul-zero-both, 
radd-zero-both, 
rless_functionality, 
real-vec-dist-symmetry, 
rless_functionality_wrt_implies, 
rleq_weakening_equal, 
rv-between-symmetry, 
rv-between-sep
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
isectElimination, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
natural_numberEquality, 
sqequalRule, 
because_Cache, 
independent_isectElimination, 
minusEquality, 
addEquality, 
independent_pairFormation
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,x,p:\mBbbR{}\^{}n.    (ax=ab  {}\mRightarrow{}  a-x-p  {}\mRightarrow{}  p  \mneq{}  b)
Date html generated:
2016_10_26-AM-11_04_03
Last ObjectModification:
2016_10_21-AM-11_42_59
Theory : reals
Home
Index