Nuprl Lemma : rv-weak-triangle-inequality2
∀n:ℕ. ∀a,b,x,p:ℝ^n.  (ax=ab 
⇒ a_x_p 
⇒ bp ≥ xp)
Proof
Definitions occuring in Statement : 
rv-be: a_b_c
, 
rv-ge: cd ≥ ab
, 
rv-congruent: ab=cd
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
iff: P 
⇐⇒ Q
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
rv-congruent: ab=cd
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
rv-ge-dist, 
radd-zero-both, 
rmul-zero-both, 
radd-int, 
rmul_functionality, 
rmul-distrib2, 
rmul-identity1, 
req_inversion, 
radd-assoc, 
rminus-as-rmul, 
req_transitivity, 
uiff_transitivity, 
radd_functionality, 
req_weakening, 
rleq_functionality, 
rmul_wf, 
rminus_wf, 
radd-preserves-rleq, 
radd_wf, 
int-to-real_wf, 
rleq_wf, 
real_wf, 
real-vec-dist_wf, 
nat_wf, 
real-vec_wf, 
rv-congruent_wf, 
rv-be_wf, 
real-vec-triangle-inequality, 
rv-be-dist
Rules used in proof : 
dependent_functionElimination, 
addEquality, 
minusEquality, 
independent_isectElimination, 
productElimination, 
sqequalRule, 
natural_numberEquality, 
setEquality, 
rename, 
setElimination, 
lambdaEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
sqequalHypSubstitution, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,x,p:\mBbbR{}\^{}n.    (ax=ab  {}\mRightarrow{}  a\_x\_p  {}\mRightarrow{}  bp  \mgeq{}  xp)
Date html generated:
2016_10_28-AM-07_39_41
Last ObjectModification:
2016_10_27-PM-03_21_04
Theory : reals
Home
Index