Nuprl Lemma : rv-weak-triangle-inequality2

n:ℕ. ∀a,b,x,p:ℝ^n.  (ax=ab  a_x_p  bp ≥ xp)


Proof




Definitions occuring in Statement :  rv-be: a_b_c rv-ge: cd ≥ ab rv-congruent: ab=cd real-vec: ^n nat: all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  iff: ⇐⇒ Q uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) subtype_rel: A ⊆B prop: member: t ∈ T uall: [x:A]. B[x] rv-congruent: ab=cd implies:  Q all: x:A. B[x]
Lemmas referenced :  rv-ge-dist radd-zero-both rmul-zero-both radd-int rmul_functionality rmul-distrib2 rmul-identity1 req_inversion radd-assoc rminus-as-rmul req_transitivity uiff_transitivity radd_functionality req_weakening rleq_functionality rmul_wf rminus_wf radd-preserves-rleq radd_wf int-to-real_wf rleq_wf real_wf real-vec-dist_wf nat_wf real-vec_wf rv-congruent_wf rv-be_wf real-vec-triangle-inequality rv-be-dist
Rules used in proof :  dependent_functionElimination addEquality minusEquality independent_isectElimination productElimination sqequalRule natural_numberEquality setEquality rename setElimination lambdaEquality applyEquality because_Cache hypothesis independent_functionElimination hypothesisEquality thin isectElimination extract_by_obid introduction cut sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,x,p:\mBbbR{}\^{}n.    (ax=ab  {}\mRightarrow{}  a\_x\_p  {}\mRightarrow{}  bp  \mgeq{}  xp)



Date html generated: 2016_10_28-AM-07_39_41
Last ObjectModification: 2016_10_27-PM-03_21_04

Theory : reals


Home Index