Nuprl Lemma : union-discrete
∀A,B:Type.  (discrete-type(A) 
⇒ discrete-type(B) 
⇒ discrete-type(A + B))
Proof
Definitions occuring in Statement : 
discrete-type: discrete-type(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
discrete-type: discrete-type(T)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
false: False
, 
guard: {T}
, 
sq_type: SQType(T)
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
equal_wf, 
real_wf, 
all_wf, 
req_wf, 
discrete-type_wf, 
inl-one-one, 
not-0-eq-1, 
inr-one-one, 
decide_wf, 
top_wf, 
int-discrete, 
subtype_base_sq, 
int_subtype_base, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
applyEquality, 
hypothesisEquality, 
thin, 
unionEquality, 
unionElimination, 
because_Cache, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
universeEquality, 
productElimination, 
independent_isectElimination, 
applyLambdaEquality, 
natural_numberEquality, 
voidElimination, 
inlEquality, 
hyp_replacement, 
instantiate, 
cumulativity, 
intEquality, 
promote_hyp, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
inrEquality
Latex:
\mforall{}A,B:Type.    (discrete-type(A)  {}\mRightarrow{}  discrete-type(B)  {}\mRightarrow{}  discrete-type(A  +  B))
Date html generated:
2019_10_30-AM-07_17_59
Last ObjectModification:
2018_08_21-PM-03_33_41
Theory : reals
Home
Index