Nuprl Lemma : union-discrete

A,B:Type.  (discrete-type(A)  discrete-type(B)  discrete-type(A B))


Proof




Definitions occuring in Statement :  discrete-type: discrete-type(T) all: x:A. B[x] implies:  Q union: left right universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q discrete-type: discrete-type(T) member: t ∈ T uall: [x:A]. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A false: False guard: {T} sq_type: SQType(T) true: True squash: T subtype_rel: A ⊆B iff: ⇐⇒ Q
Lemmas referenced :  equal_wf real_wf all_wf req_wf discrete-type_wf inl-one-one not-0-eq-1 inr-one-one decide_wf top_wf int-discrete subtype_base_sq int_subtype_base squash_wf true_wf subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut applyEquality hypothesisEquality thin unionEquality unionElimination because_Cache introduction extract_by_obid sqequalHypSubstitution isectElimination equalityTransitivity hypothesis equalitySymmetry dependent_functionElimination independent_functionElimination sqequalRule lambdaEquality functionEquality universeEquality productElimination independent_isectElimination applyLambdaEquality natural_numberEquality voidElimination inlEquality hyp_replacement instantiate cumulativity intEquality promote_hyp imageElimination imageMemberEquality baseClosed inrEquality

Latex:
\mforall{}A,B:Type.    (discrete-type(A)  {}\mRightarrow{}  discrete-type(B)  {}\mRightarrow{}  discrete-type(A  +  B))



Date html generated: 2019_10_30-AM-07_17_59
Last ObjectModification: 2018_08_21-PM-03_33_41

Theory : reals


Home Index