Nuprl Lemma : convex-comb-1-0
∀[x,y:ℝ]. ∀[t:{t:ℝ| t ≠ r0} ].  (convex-comb(x;y;t;r0) = x)
Proof
Definitions occuring in Statement : 
convex-comb: convex-comb(x;y;r;s), 
rneq: x ≠ y, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
uall: ∀[x:A]. B[x], 
set: {x:A| B[x]} , 
natural_number: $n
Definitions unfolded in proof : 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
squash: ↓T, 
implies: P ⇒ Q, 
sq_stable: SqStable(P), 
prop: ℙ, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
top: Top, 
not: ¬A, 
false: False, 
req_int_terms: t1 ≡ t2, 
rdiv: (x/y), 
rev_uimplies: rev_uimplies(P;Q), 
uiff: uiff(P;Q)
Lemmas referenced : 
req_weakening, 
rneq_functionality, 
sq_stable_rneq, 
radd-zero, 
real_wf, 
set_wf, 
int-to-real_wf, 
radd_wf, 
rneq_wf, 
convex-comb_wf1, 
sq_stable__req, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
real_term_value_mul_lemma, 
real_term_value_add_lemma, 
real_term_value_sub_lemma, 
real_polynomial_null, 
convex-comb-req, 
req_functionality, 
req-iff-rsub-is-0, 
itermVar_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermAdd_wf, 
itermSubtract_wf, 
rinv_wf2, 
rdiv_wf, 
rsub_wf, 
rmul_wf
Rules used in proof : 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
lambdaEquality, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
sqequalRule, 
independent_functionElimination, 
natural_numberEquality, 
dependent_set_memberEquality, 
hypothesis, 
because_Cache, 
rename, 
setElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
approximateComputation
Latex:
\mforall{}[x,y:\mBbbR{}].  \mforall{}[t:\{t:\mBbbR{}|  t  \mneq{}  r0\}  ].    (convex-comb(x;y;t;r0)  =  x)
Date html generated:
2017_10_04-PM-11_12_45
Last ObjectModification:
2017_07_29-PM-09_00_41
Theory : reals_2
Home
Index