Nuprl Lemma : rsin-half-pi
rsin(π/2(slower)) = r1
Proof
Definitions occuring in Statement : 
half-pi: π/2(slower), 
rsin: rsin(x), 
req: x = y, 
int-to-real: r(n), 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
nat_plus: ℕ+, 
less_than: a < b, 
squash: ↓T, 
true: True, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
iff: P ⇐⇒ Q, 
rneq: x ≠ y, 
or: P ∨ Q, 
rless: x < y, 
sq_exists: ∃x:{A| B[x]}, 
subtype_rel: A ⊆r B, 
real: ℝ
Lemmas referenced : 
rsin-rcos-pythag, 
half-pi_wf, 
radd_wf, 
rnexp_wf, 
false_wf, 
le_wf, 
rsin_wf, 
rcos_wf, 
int-to-real_wf, 
less_than_wf, 
req_wf, 
req_functionality, 
radd_functionality, 
rnexp_functionality, 
rcos-half-pi, 
req_weakening, 
rnexp0, 
uiff_transitivity, 
radd_comm, 
radd-zero-both, 
square-req-1-iff, 
rless_wf, 
rminus_wf, 
real_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
hypothesis, 
isectElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
hypothesisEquality, 
because_Cache, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
inrFormation, 
dependent_set_memberFormation, 
addEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
computeAll, 
minusEquality
Latex:
rsin(\mpi{}/2(slower))  =  r1
Date html generated:
2016_10_26-PM-00_20_41
Last ObjectModification:
2016_09_12-PM-05_42_08
Theory : reals_2
Home
Index