Nuprl Lemma : seq-normalize0

seq-normalize(0;λm.⊥~ λm.eval in
                           ⊥


Proof




Definitions occuring in Statement :  seq-normalize: seq-normalize(n;s) bottom: callbyvalue: callbyvalue lambda: λx.A[x] natural_number: $n sqequal: t
Definitions unfolded in proof :  seq-normalize: seq-normalize(n;s) has-value: (a)↓ member: t ∈ T and: P ∧ Q uall: [x:A]. B[x] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf bottom-sqle eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf iff_weakening_uiff assert_of_bnot exception-not-value value-type-has-value int-value-type has-value_wf_base is-exception_wf bottom_diverge exception-not-bottom
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule sqequalSqle cut divergentSqle callbyvalueLess sqequalHypSubstitution hypothesis baseApply closedConclusion baseClosed hypothesisEquality thin productElimination introduction extract_by_obid isectElimination lambdaFormation unionElimination equalityElimination because_Cache independent_isectElimination equalityTransitivity equalitySymmetry lessCases isect_memberFormation sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality natural_numberEquality imageMemberEquality imageElimination independent_functionElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity impliesFunctionality lessExceptionCases axiomSqleEquality intEquality exceptionSqequal sqleReflexivity callbyvalueCallbyvalue callbyvalueReduce callbyvalueExceptionCases

Latex:
seq-normalize(0;\mlambda{}m.\mbot{})  \msim{}  \mlambda{}m.eval  x  =  m  in
                                                      \mbot{}



Date html generated: 2017_04_14-AM-07_26_50
Last ObjectModification: 2017_02_27-PM-02_56_07

Theory : bar-induction


Home Index