Nuprl Lemma : map-iterate-fun-stream

[f,x:Top].  (iterate-fun-stream(f;f x) stream-map(f;iterate-fun-stream(f;x)))


Proof




Definitions occuring in Statement :  iterate-fun-stream: iterate-fun-stream(f;x) stream-map: stream-map(f;s) uall: [x:A]. B[x] top: Top apply: a sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iterate-fun-stream: iterate-fun-stream(f;x) nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: all: x:A. B[x] top: Top decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) true: True nat_plus: + stream-map: stream-map(f;s) s-cons: x.s
Lemmas referenced :  top_wf is-exception_wf int_subtype_base has-value_wf_base fun_exp_unroll_1 le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-ge-2 false_wf subtract_wf decidable__le bottom-sqle strictness-apply fun_exp0_lemma base_wf less_than_wf ge_wf less_than_irreflexivity less_than_transitivity1 nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalSqle sqleRule thin fixpointLeast lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination axiomSqleEquality isect_memberEquality voidEquality unionElimination independent_pairFormation productElimination addEquality applyEquality intEquality minusEquality because_Cache divergentSqle dependent_set_memberEquality baseApply closedConclusion baseClosed sqleReflexivity sqequalAxiom

Latex:
\mforall{}[f,x:Top].    (iterate-fun-stream(f;f  x)  \msim{}  stream-map(f;iterate-fun-stream(f;x)))



Date html generated: 2016_05_14-AM-06_24_53
Last ObjectModification: 2016_01_14-PM-08_02_54

Theory : co-recursion


Home Index