Nuprl Lemma : s-sub_wf
∀[T:Type]. ∀[s,t:stream(T)].  (s-sub(T;s;t) ∈ ℙ)
Proof
Definitions occuring in Statement : 
s-sub: s-sub(T;s;t)
, 
stream: stream(A)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
s-sub: s-sub(T;s;t)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
subtract: n - m
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
nat_wf, 
all_wf, 
less_than_wf, 
decidable__le, 
istype-false, 
not-le-2, 
sq_stable__le, 
condition-implies-le, 
minus-add, 
istype-void, 
istype-int, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
istype-le, 
istype-nat, 
equal_wf, 
s-nth_wf, 
stream_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
closedConclusion, 
functionEquality, 
hypothesis, 
Error :lambdaEquality_alt, 
productEquality, 
applyEquality, 
hypothesisEquality, 
because_Cache, 
Error :dependent_set_memberEquality_alt, 
addEquality, 
setElimination, 
rename, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_pairFormation, 
Error :lambdaFormation_alt, 
voidElimination, 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
Error :isect_memberEquality_alt, 
minusEquality, 
Error :functionIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
Error :isectIsTypeImplies, 
Error :universeIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[s,t:stream(T)].    (s-sub(T;s;t)  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-PM-00_37_53
Last ObjectModification:
2018_11_29-PM-05_18_13
Theory : co-recursion
Home
Index