Nuprl Lemma : s-sub_wf

[T:Type]. ∀[s,t:stream(T)].  (s-sub(T;s;t) ∈ ℙ)


Proof




Definitions occuring in Statement :  s-sub: s-sub(T;s;t) stream: stream(A) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T s-sub: s-sub(T;s;t) so_lambda: λ2x.t[x] prop: and: P ∧ Q subtype_rel: A ⊆B nat: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a sq_stable: SqStable(P) squash: T subtract: m top: Top le: A ≤ B less_than': less_than'(a;b) true: True so_apply: x[s]
Lemmas referenced :  exists_wf nat_wf all_wf less_than_wf decidable__le istype-false not-le-2 sq_stable__le condition-implies-le minus-add istype-void istype-int minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel istype-le istype-nat equal_wf s-nth_wf stream_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin closedConclusion functionEquality hypothesis Error :lambdaEquality_alt,  productEquality applyEquality hypothesisEquality because_Cache Error :dependent_set_memberEquality_alt,  addEquality setElimination rename natural_numberEquality dependent_functionElimination unionElimination independent_pairFormation Error :lambdaFormation_alt,  voidElimination productElimination independent_functionElimination independent_isectElimination imageMemberEquality baseClosed imageElimination Error :isect_memberEquality_alt,  minusEquality Error :functionIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  Error :isectIsTypeImplies,  Error :universeIsType,  instantiate universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[s,t:stream(T)].    (s-sub(T;s;t)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-00_37_53
Last ObjectModification: 2018_11_29-PM-05_18_13

Theory : co-recursion


Home Index