Nuprl Lemma : eq-upto-baire-eq-from
∀a:ℕ ⟶ ℕ. ∀p,n:ℕ.  ((p ≤ n) ⇒ (a = baire_eq_from(a;n) ∈ (ℕp ⟶ ℕ)))
Proof
Definitions occuring in Statement : 
baire_eq_from: baire_eq_from(a;k), 
int_seg: {i..j-}, 
nat: ℕ, 
le: A ≤ B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
decidable: Dec(P), 
top: Top, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
lelt: i ≤ j < k, 
ge: i ≥ j , 
assert: ↑b, 
bnot: ¬bb, 
guard: {T}, 
sq_type: SQType(T), 
or: P ∨ Q, 
exists: ∃x:A. B[x], 
bfalse: ff, 
prop: ℙ, 
not: ¬A, 
false: False, 
less_than': less_than'(a;b), 
le: A ≤ B, 
subtype_rel: A ⊆r B, 
ifthenelse: if b then t else f fi , 
uimplies: b supposing a, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
nat: ℕ, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
baire_eq_from: baire_eq_from(a;k), 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
int_seg_wf, 
le_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermVar_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
nat_properties, 
int_seg_properties, 
less_than_wf, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
false_wf, 
int_seg_subtype_nat, 
nat_wf, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
lt_int_wf
Rules used in proof : 
functionEquality, 
dependent_set_memberEquality, 
computeAll, 
voidEquality, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
voidElimination, 
independent_functionElimination, 
cumulativity, 
instantiate, 
dependent_functionElimination, 
promote_hyp, 
dependent_pairFormation, 
natural_numberEquality, 
independent_pairFormation, 
applyEquality, 
independent_isectElimination, 
productElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
unionElimination, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
sqequalRule, 
functionExtensionality, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}p,n:\mBbbN{}.    ((p  \mleq{}  n)  {}\mRightarrow{}  (a  =  baire\_eq\_from(a;n)))
Date html generated:
2017_04_21-AM-11_24_32
Last ObjectModification:
2017_04_20-PM-06_46_56
Theory : continuity
Home
Index