Nuprl Lemma : eq-upto-baire-eq-from

a:ℕ ⟶ ℕ. ∀p,n:ℕ.  ((p ≤ n)  (a baire_eq_from(a;n) ∈ (ℕp ⟶ ℕ)))


Proof




Definitions occuring in Statement :  baire_eq_from: baire_eq_from(a;k) int_seg: {i..j-} nat: le: A ≤ B all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  decidable: Dec(P) top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) lelt: i ≤ j < k ge: i ≥  assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q exists: x:A. B[x] bfalse: ff prop: not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B subtype_rel: A ⊆B ifthenelse: if then else fi  uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 nat: int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T baire_eq_from: baire_eq_from(a;k) implies:  Q all: x:A. B[x]
Lemmas referenced :  int_seg_wf le_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermVar_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__equal_int nat_properties int_seg_properties less_than_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert false_wf int_seg_subtype_nat nat_wf assert_of_lt_int eqtt_to_assert bool_wf lt_int_wf
Rules used in proof :  functionEquality dependent_set_memberEquality computeAll voidEquality isect_memberEquality intEquality int_eqEquality lambdaEquality voidElimination independent_functionElimination cumulativity instantiate dependent_functionElimination promote_hyp dependent_pairFormation natural_numberEquality independent_pairFormation applyEquality independent_isectElimination productElimination equalitySymmetry equalityTransitivity equalityElimination unionElimination because_Cache hypothesis hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid introduction sqequalRule functionExtensionality cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}p,n:\mBbbN{}.    ((p  \mleq{}  n)  {}\mRightarrow{}  (a  =  baire\_eq\_from(a;n)))



Date html generated: 2017_04_21-AM-11_24_32
Last ObjectModification: 2017_04_20-PM-06_46_56

Theory : continuity


Home Index