Nuprl Lemma : replace-seq-from-succ
∀T:Type. ∀f:ℕ ⟶ T. ∀m:ℕ. ∀k:T.
  (0 < m 
⇒ (replace-seq-from(f;m;k) = (λx.if x=m - 1  then f x  else (replace-seq-from(f;m - 1;k) x)) ∈ (ℕ ⟶ T)))
Proof
Definitions occuring in Statement : 
replace-seq-from: replace-seq-from(s;n;k)
, 
nat: ℕ
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
int_eq: if a=b  then c  else d
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
replace-seq-from: replace-seq-from(s;n;k)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
top: Top
, 
true: True
, 
squash: ↓T
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced : 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
less_than_wf, 
eq_int_wf, 
subtract_wf, 
assert_of_eq_int, 
nat_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
functionExtensionality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
lessCases, 
isect_memberFormation, 
sqequalAxiom, 
isect_memberEquality, 
independent_pairFormation, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_functionElimination, 
int_eqReduceTrueSq, 
applyEquality, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
int_eqReduceFalseSq, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
computeAll, 
functionEquality, 
universeEquality
Latex:
\mforall{}T:Type.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  T.  \mforall{}m:\mBbbN{}.  \mforall{}k:T.
    (0  <  m
    {}\mRightarrow{}  (replace-seq-from(f;m;k)  =  (\mlambda{}x.if  x=m  -  1    then  f  x    else  (replace-seq-from(f;m  -  1;k)  x))))
Date html generated:
2017_04_20-AM-07_22_51
Last ObjectModification:
2017_02_27-PM-05_58_17
Theory : continuity
Home
Index