Nuprl Lemma : replace-seq-from-succ

T:Type. ∀f:ℕ ⟶ T. ∀m:ℕ. ∀k:T.
  (0 <  (replace-seq-from(f;m;k) x.if x=m 1  then x  else (replace-seq-from(f;m 1;k) x)) ∈ (ℕ ⟶ T)))


Proof




Definitions occuring in Statement :  replace-seq-from: replace-seq-from(s;n;k) nat: less_than: a < b all: x:A. B[x] implies:  Q int_eq: if a=b  then c  else d apply: a lambda: λx.A[x] function: x:A ⟶ B[x] subtract: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q replace-seq-from: replace-seq-from(s;n;k) member: t ∈ T uall: [x:A]. B[x] nat: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈  ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf eq_int_wf subtract_wf assert_of_eq_int nat_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int nat_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf intformnot_wf intformeq_wf itermSubtract_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule functionExtensionality introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis because_Cache unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination lessCases isect_memberFormation sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality natural_numberEquality imageMemberEquality baseClosed imageElimination independent_functionElimination int_eqReduceTrueSq applyEquality dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity int_eqReduceFalseSq lambdaEquality int_eqEquality intEquality computeAll functionEquality universeEquality

Latex:
\mforall{}T:Type.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  T.  \mforall{}m:\mBbbN{}.  \mforall{}k:T.
    (0  <  m
    {}\mRightarrow{}  (replace-seq-from(f;m;k)  =  (\mlambda{}x.if  x=m  -  1    then  f  x    else  (replace-seq-from(f;m  -  1;k)  x))))



Date html generated: 2017_04_20-AM-07_22_51
Last ObjectModification: 2017_02_27-PM-05_58_17

Theory : continuity


Home Index