Nuprl Lemma : no_repeats_mu_index

[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:T List]. ∀[i:ℕ||L||].  mu(λi@0.(eq L[i] L[i@0])) i ∈ ℤ supposing no_repeats(T;L)


Proof




Definitions occuring in Statement :  mu: mu(f) no_repeats: no_repeats(T;l) select: L[n] length: ||as|| list: List deq: EqDecider(T) int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] apply: a lambda: λx.A[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a deq: EqDecider(T) int_seg: {i..j-} guard: {T} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: less_than: a < b squash: T cand: c∧ B eqof: eqof(d) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) l_member!: (x ∈l) subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) nat: ge: i ≥ 
Lemmas referenced :  int_formula_prop_eq_lemma intformeq_wf decidable__equal_int le_wf nat_properties false_wf int_seg_subtype_nat select_member no_repeats_member deq_wf list_wf no_repeats_wf assert_wf safe-assert-deq int_seg_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le length_wf int_seg_properties select_wf length_wf_nat mu-bound-unique
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality applyEquality setElimination rename cumulativity independent_isectElimination natural_numberEquality productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll because_Cache imageElimination lambdaFormation axiomEquality equalityTransitivity equalitySymmetry universeEquality independent_functionElimination setEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:T  List].  \mforall{}[i:\mBbbN{}||L||].
    mu(\mlambda{}i@0.(eq  L[i]  L[i@0]))  =  i  supposing  no\_repeats(T;L)



Date html generated: 2016_05_14-PM-03_32_14
Last ObjectModification: 2016_01_14-PM-11_19_53

Theory : decidable!equality


Home Index