Nuprl Lemma : remove-repeats-fun-map
∀[A,B:Type]. ∀[eq:EqDecider(B)]. ∀[f:A ⟶ B]. ∀[L:A List].
  (map(f;remove-repeats-fun(eq;f;L)) = remove-repeats(eq;map(f;L)) ∈ (B List))
Proof
Definitions occuring in Statement : 
remove-repeats-fun: remove-repeats-fun(eq;f;L)
, 
remove-repeats: remove-repeats(eq;L)
, 
map: map(f;as)
, 
list: T List
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
remove-repeats-fun: remove-repeats-fun(eq;f;L)
, 
all: ∀x:A. B[x]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
squash: ↓T
, 
true: True
, 
prop: ℙ
, 
deq: EqDecider(T)
, 
compose: f o g
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list_induction, 
equal_wf, 
list_wf, 
map_wf, 
remove-repeats-fun_wf, 
remove-repeats_wf, 
list_ind_nil_lemma, 
map_nil_lemma, 
remove_repeats_nil_lemma, 
nil_wf, 
list_ind_cons_lemma, 
map_cons_lemma, 
remove_repeats_cons_lemma, 
cons_wf, 
deq_wf, 
filter_wf5, 
l_member_wf, 
bnot_wf, 
set_wf, 
filter-map, 
squash_wf, 
true_wf, 
bool_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesis, 
functionExtensionality, 
applyEquality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
rename, 
imageElimination, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
axiomEquality, 
functionEquality, 
universeEquality, 
equalityUniverse, 
levelHypothesis, 
setElimination, 
setEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}[A,B:Type].  \mforall{}[eq:EqDecider(B)].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[L:A  List].
    (map(f;remove-repeats-fun(eq;f;L))  =  remove-repeats(eq;map(f;L)))
Date html generated:
2017_04_17-AM-09_12_11
Last ObjectModification:
2017_02_27-PM-05_19_27
Theory : decidable!equality
Home
Index