Nuprl Lemma : strict-majority_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:T List].  (strict-majority(eq;L) ∈ T?)


Proof




Definitions occuring in Statement :  strict-majority: strict-majority(eq;L) list: List deq: EqDecider(T) uall: [x:A]. B[x] unit: Unit member: t ∈ T union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T strict-majority: strict-majority(eq;L) subtype_rel: A ⊆B all: x:A. B[x] uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] nat_plus: + prop: pi2: snd(t) implies:  Q or: P ∨ Q ifthenelse: if then else fi  btrue: tt cons: [a b] top: Top bfalse: ff
Lemmas referenced :  filter_wf5 count-repeats_wf l_member_wf subtype_rel_list nat_plus_wf subtype_rel_product lt_int_wf length_wf list_wf let_wf unit_wf2 list-cases null_nil_lemma it_wf product_subtype_list null_cons_lemma hd_wf cons_wf length_cons_ge_one top_wf pi1_wf equal_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin productEquality cumulativity hypothesisEquality intEquality because_Cache hypothesis applyEquality sqequalRule lambdaEquality lambdaFormation productElimination independent_pairEquality independent_isectElimination setElimination rename multiplyEquality natural_numberEquality setEquality unionEquality dependent_functionElimination unionElimination inrEquality promote_hyp hypothesis_subsumption isect_memberEquality voidElimination voidEquality inlEquality equalityTransitivity equalitySymmetry independent_functionElimination axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:T  List].    (strict-majority(eq;L)  \mmember{}  T?)



Date html generated: 2017_04_17-AM-09_09_15
Last ObjectModification: 2017_02_27-PM-05_17_26

Theory : decidable!equality


Home Index