Nuprl Lemma : fix-strict

[F:Base]. strict1(fix(F)) supposing strict2(λx,y. (F x))


Proof




Definitions occuring in Statement :  strict2: strict2(F) strict1: strict1(F) uimplies: supposing a uall: [x:A]. B[x] apply: a fix: fix(F) lambda: λx.A[x] base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a strict1: strict1(F) and: P ∧ Q strict2: strict2(F) cand: c∧ B all: x:A. B[x] implies:  Q prop: squash: T has-value: (a)↓ is-exception: is-exception(t) nat: false: False ge: i ≥  guard: {T} subtype_rel: A ⊆B top: Top decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q uiff: uiff(P;Q) subtract: m le: A ≤ B less_than': less_than'(a;b) true: True nat_plus: +
Lemmas referenced :  fun_exp_unroll_1 le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-ge-2 false_wf subtract_wf decidable__le exception-not-bottom strictness-apply fun_exp0_lemma int_subtype_base less_than_wf ge_wf less_than_irreflexivity less_than_transitivity1 nat_properties strict2_wf is-exception_wf base_wf has-value_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalHypSubstitution sqequalRule productElimination thin lambdaFormation lemma_by_obid isectElimination baseApply closedConclusion baseClosed hypothesisEquality hypothesis because_Cache imageElimination imageMemberEquality independent_pairEquality lambdaEquality dependent_functionElimination axiomSqleEquality sqequalAxiom isect_memberEquality equalityTransitivity equalitySymmetry independent_functionElimination exceptionCompactness setElimination rename intWeakElimination natural_numberEquality independent_isectElimination voidElimination applyEquality voidEquality unionElimination addEquality intEquality minusEquality dependent_set_memberEquality

Latex:
\mforall{}[F:Base].  strict1(fix(F))  supposing  strict2(\mlambda{}x,y.  (F  y  x))



Date html generated: 2016_05_13-PM-04_07_25
Last ObjectModification: 2016_01_14-PM-07_46_11

Theory : fun_1


Home Index