Nuprl Lemma : fix-strict
∀[F:Base]. strict1(fix(F)) supposing strict2(λx,y. (F y x))
Proof
Definitions occuring in Statement : 
strict2: strict2(F), 
strict1: strict1(F), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
apply: f a, 
fix: fix(F), 
lambda: λx.A[x], 
base: Base
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
strict1: strict1(F), 
and: P ∧ Q, 
strict2: strict2(F), 
cand: A c∧ B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
prop: ℙ, 
squash: ↓T, 
has-value: (a)↓, 
is-exception: is-exception(t), 
nat: ℕ, 
false: False, 
ge: i ≥ j , 
guard: {T}, 
subtype_rel: A ⊆r B, 
top: Top, 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
subtract: n - m, 
le: A ≤ B, 
less_than': less_than'(a;b), 
true: True, 
nat_plus: ℕ+
Lemmas referenced : 
fun_exp_unroll_1, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-swap, 
add-associates, 
minus-minus, 
minus-add, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
condition-implies-le, 
less-iff-le, 
not-ge-2, 
false_wf, 
subtract_wf, 
decidable__le, 
exception-not-bottom, 
strictness-apply, 
fun_exp0_lemma, 
int_subtype_base, 
less_than_wf, 
ge_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
nat_properties, 
strict2_wf, 
is-exception_wf, 
base_wf, 
has-value_wf_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
sqequalRule, 
productElimination, 
thin, 
lambdaFormation, 
lemma_by_obid, 
isectElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
imageElimination, 
imageMemberEquality, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomSqleEquality, 
sqequalAxiom, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
exceptionCompactness, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
voidElimination, 
applyEquality, 
voidEquality, 
unionElimination, 
addEquality, 
intEquality, 
minusEquality, 
dependent_set_memberEquality
Latex:
\mforall{}[F:Base].  strict1(fix(F))  supposing  strict2(\mlambda{}x,y.  (F  y  x))
Date html generated:
2016_05_13-PM-04_07_25
Last ObjectModification:
2016_01_14-PM-07_46_11
Theory : fun_1
Home
Index