Nuprl Lemma : absval-squeeze

[a,b,c,d:ℤ].  |b c| ≤ (d a) supposing ((a ≤ b) ∧ (b ≤ d)) ∧ (a ≤ c) ∧ (c ≤ d)


Proof




Definitions occuring in Statement :  absval: |i| uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B and: P ∧ Q subtract: m int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b le: A ≤ B subtype_rel: A ⊆B
Lemmas referenced :  absval_unfold subtract_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot itermMinus_wf int_term_value_minus_lemma less_than'_wf absval_wf le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule extract_by_obid isectElimination hypothesisEquality hypothesis minusEquality natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination because_Cache lessCases sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality imageMemberEquality baseClosed imageElimination independent_functionElimination dependent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality computeAll promote_hyp instantiate cumulativity independent_pairEquality applyEquality axiomEquality productEquality

Latex:
\mforall{}[a,b,c,d:\mBbbZ{}].    |b  -  c|  \mleq{}  (d  -  a)  supposing  ((a  \mleq{}  b)  \mwedge{}  (b  \mleq{}  d))  \mwedge{}  (a  \mleq{}  c)  \mwedge{}  (c  \mleq{}  d)



Date html generated: 2017_04_14-AM-09_22_55
Last ObjectModification: 2017_02_27-PM-03_58_32

Theory : int_2


Home Index