Nuprl Lemma : ndiff_ndiff_eq_imin

[a,b:ℕ].  ((a -- (a -- b)) imin(a;b) ∈ ℤ)


Proof




Definitions occuring in Statement :  ndiff: -- b imin: imin(a;b) nat: uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  imin: imin(a;b) ndiff: -- b imax: imax(a;b) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A so_lambda: λ2x.t[x] so_apply: x[s] ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top has-value: (a)↓
Lemmas referenced :  nat_wf value-type-has-value int-value-type subtract_wf le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot le_wf set-value-type nat_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermConstant_wf itermVar_wf intformle_wf itermSubtract_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_term_value_subtract_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality because_Cache intEquality independent_isectElimination setElimination rename natural_numberEquality lambdaFormation unionElimination equalityElimination productElimination dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination lambdaEquality int_eqEquality voidEquality independent_pairFormation computeAll callbyvalueReduce

Latex:
\mforall{}[a,b:\mBbbN{}].    ((a  --  (a  --  b))  =  imin(a;b))



Date html generated: 2017_04_14-AM-09_15_01
Last ObjectModification: 2017_02_27-PM-03_52_58

Theory : int_2


Home Index